- •7. Методы определения расчетных электрических нагрузок. Метод коэффициента спроса; метод удельных норм расхода на единицу выпускаемой продукции.
- •8. Автоматический выключатель - назначение, устройство, принцип работы. Тепловой и электромагнитный расцепители автомата. Выбор автомата.
- •25. Центральный распределительный пункт (црп). Назначение, схемы црп с одной и двумя секциями шин. Камеры ксо, кру. Достоинства, недостатки.
- •26. Схемы питания цеховых трансформаторных подстанций.
- •27. Распределение электроэнергии в сетях напряжением до 1000 в. Радиальные и магистральные схемы. Схема блок "трансформатор - магистраль**.
- •29. Схема глубокого ввода.
- •30. Трансформаторная подстанция (тп). Назначение, схема одно- и двухтрансформаторной тп. Выбор низковольтных аппаратов на тп.
- •24. Главная понизительная подстанция. Назначение, схема первичных соединений гпп.
- •32. Виды коротких замыканий в электрических сетях. Ударный, установившийся и сверхпереходной токи короткого замыкания. Ударный коэффициент.
- •34. Методы расчета токов короткого замыкания. Метод относительных базисных величин.
- •35. Сопротивление отдельных элементов схемы электроснабжения.
- •36. Определение результирующего сопротивления при расчете тока короткого замыкания.
- •38. Расчет токов короткого замыкания в сетях напряжением до 1 кВ.
- •41. Максимальная токовая защита (мтз). Принцип работы и схема мтз на примере линии с однорторонним питанием
- •42. Максимальная токовая отсечка. Принцип работы и схема защиты на примере линии с односторонним питанием.
- •44. Газовая защита.
- •51. Расчет потерь мощности и энергии в трансформаторах и линиях.
- •45. Выбор высоковольтных кабелей.
- •46. Выбор напряжения для цеховых сетей.
- •47. Выбор числа и мощности трансформаторов наТп.
- •48. Выбор проводов и кабелей в низковольтных сетях.
- •49. Компенсация реактивной мощности. Необходимость компенсации и способы повышения коэффициента мощности.
- •50. Определение мощности батарей конденсаторов, устанавливаемых в сети до I кВ.
- •17. Расчет сети переменного тока по потере напряжения.
- •17. Расчет сети переменного тока по потере напряжения.
- •2.Характеристики потребителей электроэнергии.
- •6. Методы определения расчетных электрических нагрузок. Метод расчетных коэффициентов
- •9.Магнитный пускатель, тепловое реле - назначение, устройство, принцип работы, выбор.
- •1 5. Условия выбора электрических аппаратов.
- •16. Расчет сети постоянного тока по потере напряжения.
- •20.Режимы работы электрических сетей. Трехфазная сеть с изолированной нейтралью.
- •21. Контроль состояния изоляции в сетях с изолированной нейтралью.
- •22.Электрические сети с глухозаземленной и компенсированной нейтралью.
- •23 .Режимы нейтрали электроустановок до 1 кВ. Системы tn-s, tn-c, tn-c-s, it.
- •33.Порядок расчёта токов короткого замыкания
35. Сопротивление отдельных элементов схемы электроснабжения.
36. Определение результирующего сопротивления при расчете тока короткого замыкания.
Для упрощения расчетов несимметричных КЗ применяется метод симметричных составляющих, который заключается в замене несимметричного режима трехфазной сети симметричным режимом или замене несимметричного повреждения условным трехфазным коротким замыканием.
По этому методу любая несимметричная трехфазная система может быть однозначно разложена на три симметричные системы, или последовательности – прямую, обратную и нулевую.
Напряжение в месте КЗ при несимметричном замыкании не равно нулю, как при трехфазном металлическом КЗ, и определяется для последовательностей следующими уравнениями:
Uk1 = E – Ik1 jX1Σ , (4.1)
Uk2 = 0 – Ik2 jX2Σ , (4.2)
Uk0 = 0 – Ik0 jX0Σ , (4.3)
где Е – результирующая или эквивалентная ЭДС источников питания.
Так как для каждого генератора трехфазная симметричная система ЭДС статора является системой прямой последовательности, в схемах обратной и нулевой последовательности ЭДС источников отсутствуют.
Создаваемые в схемах симметричных составляющих ЭДС самоиндукции от прохождения токов прямой, обратной и нулевой последовательности учитываются в виде падений напряжения с обратным знаком в сопротивлениях X1Σ, X2Σ и X0Σ.
Для определения результирующих сопротивлений X1Σ, X2Σ и X0Σ при расчете несимметричного КЗ составляются схемы прямой обратной и нулевой последовательности.
(36)))))))))
37. Расчет тока короткого замыкания при наличии системы неограниченной мощности.
(37)))))))))
38. Расчет токов короткого замыкания в сетях напряжением до 1 кВ.
(38)))))))))))
40. Оперативные токи, применяемые в релейной защите. Их достоинства и недостатки. Применяются следующие системы оперативного тока на подстанциях: 1) постоянный оперативный ток - система питания оперативных цепей, при которой в качестве источника питания применяется аккумуляторная батарея; ; 2) переменный оперативный ток - система питания оперативных цепей, при которой в качестве основных источников питания используются измери-тельные трансформаторы тока защищаемых присоединений, измерительные трансформаторы напряжения, трансформаторы собственных нужд. В качестве дополнительных источников питания импульсного действия используются предварительно заряженные конденсаторы;
3) выпрямленный оперативный ток - система питания оперативных цепей переменным током, в которой переменный ток преобразуется в постоянный (выпрямленный) с помощью блоков питания и выпрямительных силовых устройств. В качестве дополнительных источников питания импульсного действия могут использоваться предварительно заряженные конденсаторы; 4) смешанная система оперативного тока - система питания оперативных цепей, при которой используются разные системы оперативного тока (постоянный и выпрямленный, переменный и выпрямленный). В системах оперативного тока различают:
- зависимое питание, когда работа системы питания оперативных цепей зависит от режима работы данной электроустановки (подстанции);
- независимое питание, когда работа системы питания оперативных цепей не зависит от режима работы данной электроустановки.
Области применения различных систем оперативного тока
Постоянный оперативный ток применяется на подстанциях 110-220 кВ со сборными шинами этих напряжений, на подстанциях 35-220 кВ без сборных шин на этих напряжениях с масляными выключателями с электромагнитным приводом, для которых возможность включения от выпрямительных устройств не подтверждена заводом изгото-ем.
Переменный оперативный ток применяется на подстанциях 35/6(10) кВ с масляными выключателями 35 кВ, на подстанциях 35-220/6(10) и 110-220/35/6(10) кВ без выключателей на стороне высшего напряжения, когда выключатели 6(10)-35 кВ оснащены пружинными приводами.
Выпрямленный оперативный ток должен применяться: на подстанциях 35/6(10) кВ с масляными выключателями 35 кВ, на подстанциях 35-220/6(10) кВ и 110-220/35/6(10) кВ без выключателей на стороне высшего напряжения, когда выключатели оснащены электромагнитными приводами; на подстанциях 110 кВ с малым числом масляных выключателей на стороне 110 кВ.
Смешанная система постоянного и выпрямленного оперативного тока применяется для уменьшения емкости аккумуляторной батареи за счет применения силовых выпрямительных устройств для питания цепей электромагнитов включения масляных выключателей. Целесообразность применения этой системы должна быть подтверждена технико-экономическими расчетами.(40))))))))))
39. Релейная защита в системе электроснабжения. Требования к релейной защите. В различных электрических сетях возможно возникновение повреждений, нарушающих нормальную работу ЭУ. Предотвратить возникновение аварий можно путем быстрого отключения поврежденного элемента или участка сети. Для этой цели ЭУ снабжают автоматически действующими устройствами – релейной защитой (РЗ), являющейся одним из видов противоаварийной автоматики. РЗ может быть предназначена для сигнализации о нарушениях в сетях. Само название «релейная защита» связано с наличием в ней электрических аппаратов, называемых реле. Реле представляет собой аппарат автоматического действия, включающий и отключающий электрические цепи защиты и управления под действием различного рода импульсов (электрических, тепловых, световых, механических) в зависимости от заданных параметров контролируемой величины, времени и др. При повреждениях в цепи (коротких замыканиях, в результате ошибочных действий персонала, при глубоких понижениях напряжения и т. п.) РЗ выявляет поврежденный участок и отключает его, воздействуя на коммутационные аппараты. При анормальных режимах РЗ действует на сигнал, предупреждающий постоянный обслуживающий персонал подстанции о неисправностях в режиме работы электрооборудования. На подстанциях без постоянного обслуживающего персонала те же защиты действуют на отключение, но обязательно с выдержкой времени. Основными требованиями к РЗ являются: быстродействие, селективность, чувствительность и надежность. Быстродействие - чем быстрее произойдут обнаружение и отключение поврежденного участка, тем меньше разрушительное действие аварийного тока на электрооборудование, тем легче сохранить нормальную работу потребителей неповрежденной части ЭУ. Поэтому электрические сети должны оснащаться быстродействующими РЗ. Быстродействие РЗ снижает ущерб при КЗ электрической сети, так как уменьшаются размеры разрушения поврежденного участка, повышается эффективность работы автоматики. Селективностью, или избирательностью, называется способность автоматики отключать при КЗ только поврежденный участок или ближайший к нему, оставляя в работе потребителей, подключенных к неповрежденному участку. Селективное действие РЗ аналогично селективному действию предохранителей, чем обеспечивается надежное электроснабжение потребителей. Иногда одновременное требование селективности быстродействия приводит к усложнению РЗ. В этом случае следует в первую очередь обесёпечивать выполнение того требования, которое в данных условиях является определяющим. Чувствительностью РЗ является ее способность реагировать самые малые изменения контролируемого параметра (как правило, тока КЗ и перегрузки) и анормальные режимы работы ЭУ. Она характеризует устойчивое срабатывание Р3 при К3 в защищаемой зоне. Надежность работы Р3 заключается в ее правильном и безотказном действии во всех предусмотренных по ее назначению случаях. Надежность обеспечивается применением высококачественных реле, простых и совершенных схем Р3, тщательным выполнением монтажных работ, должной культурной эксплуатации защитных устройств. В устройствах РЗ применяют различные реле, отличающиеся по принципу действия: электрические, механические, тепловые, полупроводниковые. Электрические реле реагируют на электрические величины: то напряжение, мощность, частоту, сопротивление, угол сдвига между током и напряжением, угол между двумя точками и двумя напряжениями. Механические реле реагируют на неэлектрические величины давление, уровень жидкости и т. п. Тепловые реле реагируют на количество выделенного тепла и изменение температуры. Полупроводниковые реле - современный тип конструкций реле, позволяющий повысить чувствительность и срок службы, улучшить характеристики реле, выполнить их без контактов и движущихся частей, снизить потребляемую мощность.(39))))))))))))))))
