- •Конструирование радиоэлектронной геофизической аппаратуры
- •Тема 9: электрические соединения в радиоэлектронной аппаратуре
- •Роберт Тимофеевич Шарло. Уральский геофизик. Хх в.
- •9.1. Виды электрических соединений [2]
- •9.2. Конструкции сигнальных лп [2]
- •9.3. Линии электропитания [2]
- •9.4. Конструирование заземления [2]
- •9.5. Электрические контакты [2]
9.3. Линии электропитания [2]
Виды линий. Электроэнергия от источника к потребителям подводится двумя проводами - потенциальным и нулевым. Сложная аппаратура требует нескольких источников вторичного электропитания (ИВЭП). Потенциальные провода всех ИВЭП называются линиями электропитания и выполняются в виде индивидуальных проводов, нулевые провода в большинстве случаев объединяют и выполняют в виде одного мощного провода или металлического листа.
Выделяют параллельные, последовательные, а также точечные и параллельно-последовательные линии электропитания. Сравнение и выбор схем проводится по падению напряжения, нагрузочной способности по току, легкости проведения электромонтажных работ и некоторым другим факторам. В сложной РЭА из-за ограничений на конструкцию одновременно можно использовать несколько вариантов разводки электропитания, если подобный подход позволит улучшить электрические параметры, упростить монтаж, повысить ремонтопригодность.
Электропитание по схемам параллельной и последовательной разводки подводится гибкими одно- и многожильными проводами, подсоединяемыми к выводам питания потребителей электроэнергии (ПЭ). Преимуществом этих схем разводки является простота конструкции, легкость в проектировании и монтаже, необходимость в двух коммутационных выводах ПЭ для каждого питающего компонента (подводящего и отводящего).
Точечную разводку осуществляют жестким проводом и системой гибких проводов, с одного конца подпаиваемых к жесткому проводу, а с другого — к ПЭ. Параллельно-последовательную разводку рекомендуется применять при регулярном расположении ПЭ. Как и при точечной разводке, суммарные токи протекают по мощной линии электропитания с большой площадью поперечного сечения. Линии электропитания и нулевого потенциала выполняют в виде единой конструкции, состоящей из двух медных проводников или проводов круглого сечения, защищенных от короткого замыкания изолирующими пластинами или воздушным промежутком.
Рис. 9.3.1.
Uлэ = Iпэ Z (1+2+…+n) = Iпэ Z n(n+1)/2,
где n - число ПЭ.
В приведенном выражении произведение nZ есть сопротивление линии электропитания (ЛЭП). Полагая, что nZ = Znlлэ, получим
Uлэ = Iпэ Znlлэ (n+1)/2,
где Zn - сопротивление на единицу длины линии (погонное сопротивление), lлэ - длина ЛЭП.
Уменьшая сопротивление и длину ЛЭП, а также число подсоединяемых к линии ПЭ, можно снизить Uлэ в любое число раз. Сделать меньшей длину линии можно микроминиатюризацией и соответствующей компоновкой аппаратуры, снижением числа ПЭ - введением в конструкцию нескольких линий, подсоединяемых к одному ИВЭП. Другой путь уменьшения падения напряжения на линии электропитания - уменьшение сопротивлений Z или Zn.
Падение напряжения на ЛЭП при последовательной разводке быстро увеличивается с возрастанием числа ПЭ. Поэтому эти типы разводок, если токи ПЭ велики, а сопротивления линий сравнимы с сопротивлением нагрузки, применять не рекомендуется.
Развязывающий конденсатор, подсоединяемый к выходу источника непосредственно у ПЭ, является для ПЭ как бы индивидуальным источником питания и осуществляет его электропитание накопленной энергией. Требуемая емкость развязывающего конденсатора вычисляется по формуле Ср ≥ k tф2/L, где k - кратность уменьшения падения напряжения на линиях электропитания и нулевого потенциала, tф - наименьшая длительность фронта импульсного сигнала, L - суммарная индуктивность линий электропитания и нулевого потенциала. При расчете конденсатора определяют падение напряжения на линии электропитания и для обеспечения работоспособности ПЭ принимают решение об уменьшении этого напряжения в k раз. Для улучшения режима работы аппаратуры развязывающие конденсаторы с выводами минимальной длины устанавливаются у каждого ПЭ.
Полное сопротивление ЛЭП складывается из активной и реактивной составляющих, однако, уже на частоте 100 кГц активным сопротивлением можно пренебречь и рассматривать только индуктивную составляющую. Уменьшение индуктивности ЛЭП можно достигнуть увеличением размеров ее поперечного сечения. Однако подобный подход не всегда результативен. Например, медный провод длиной 200 мм и диаметром 0,1 и 0,2 мм обладает соответственно индуктивностью 330 и 210 нГн, и при увеличении расхода меди в 4 раза индуктивность уменьшилась только в 1,5 раза.
Меньшей индуктивностью при одинаковых геометрических размерах обладает провод, расположенный над землей, большей - провода круглого и прямоугольного сечений. Наибольшее волновое сопротивление имеет провод круглого, наименьшее — прямоугольного сечения. Для согласования с внутренним сопротивлением ИВЭП волновое сопротивление ЛЭП должно быть минимально возможным.
