Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biology_exam.docx
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
995.27 Кб
Скачать

32. Включения в эукариотических клетках, их виды, назначение.

Включениями называют относительно непостоянные компоненты цитоплазмы, которые служат запасными питательными веществами (жир, гликоген), цитоплазмы, которые служат запасными питательными веществами (жир, гликоген), продуктами, подлежащими выведению из клетки (гранулы секрета), балластными веществами (некоторые пигменты).

Включения представляют собой продукты жизнедеятельности клеток. Ими могут быть плотные частицы-гранулы, жидкие капли-вакуоли, а также кристаллы. Некоторые вакуоли и гранулы окружены мембранами. В зависимости от выполняемых функций включения условно делят на три группы: трофического, секреторного и специального значения. Включения трофического значения - капельки жира, гранулы крахмала. гликогена, белка. В небольших количествах они присутствуют во всех клетках и используются в процессе ассимиляции. Но в некоторых специальных клетках они накапливаются в большом количестве. Так, много крахмальных зерен в клетках клубней картофеля, гранул гликогена - в клетках печени. Количественное содержание этих включений меняется в зависимости от физиологического состояния клетки и всего организма. У голодного животного клетки печени содержат значительно меньше гликогена, чем у сытого. Включения секреторного значения образуются преимущественно в клетках желез и предназначены для выделения из клетки.

Количество этих включений в клетке также зависит от физиологического состояния: организма. Так, клетки поджелудочной железы голодного животного богаты каплями секрета. а сытого - бедны ими.

Включения специального значения встречаются в цитоплазме высокодифференцированиых клеток. выполняющих специализированную функцию. Примером их может служить гемоглобин, диффузно рассеянный в эритроцитах.

33. Изменчивость, её виды в человеческих популяциях

Изменчивостью называется свойство, противоположное наследственности, связанное с появлением признаков, отличающихся от типичных. Если бы при репродукции всегда проявлялась только преемственность прежде существовавших свойств и признаков, то эволюция органического мира была бы невозможна,но живой природе свойственна изменчивость. В первую очередь она связана с «ошибками» при репродукции. По иному построенные молекулы нуклеиновой кислоты несут новую наследственную информацию. Эта новая, измененная информация в большинстве случаев бывает вредной для организма, но в ряде случаев в результате изменчивости организм приобретает новые свойства, полезные в данных условиях. Новые признаки подхватываются и закрепляются отбором. Так создаются новые формы, новые виды. Таким образом, наследственная изменчивость создает предпосылки для видообразования и эволюции, а тем самым и существования жизни.

Различают изменчивость ненаследственую и наследственную. Первая из них связана с изменением фенотипа, вторая- генотипа. Ненаследственную изменчивость Дарвин называл определенной, ее принято называть модификационной, или фенотипической, изменчивостью. Наследственная изменчивость, по определению Дарвина, является неопределенной( «генотипическая изменчивость» ).

ФЕНОТИПИЧЕСКАЯ (МОДИФИКАЦИОННАЯ) И ГЕНОТИПИЧЕСКАЯ ИЗМЕНЧИВОСТЬ

Фенотипическая изменчивость

Модификациями называются фенотипические изменения, возникающие под влиянием условий среды. Размах модификационной изменчивости ограничен нормой реакции. Развившееся конкретное модификационное изменение признака не наследуется, но диапозон модификационной изменчивости обусловлен наследственностью. Модификационные изменения не влекут за собой изменений генотипа и соответсвуют условиям обитания, являются приспособительными.

Генотипическую, или не наследственную, делят на комбинативную и мутационную.

Комбинативная изменчивость

Комбинативная изменчивость связана с получением новых сочетаний генов в генотипе. Достигается это в результате 2 процессов: 1) расхождение хромосом при мейозе и случайного их сочетания при оплодотворении, 2) рекомбинации генов благодаря кроссинговеру; сами наследственные факторы(гены) при этом не изменяется, но новые сочетания их между собой приводят к появлению организмов с новым феноипом.

Мутационная изменчивость

Мутацией называется изменение, обусловленное реорганизацией воспроизводящих структур клетки, изменением ее генетического аппарата. Эти мутации резко отличаются от модификаций, не затрагивающих генотип особи. Мутации возникают внезапно, скачкообразно и иногда резко отличают организм от исходной формы. Мутационная изменчивость свойственна всем организмам, она поставляет материал для отбора, с ней связана эволюция-процесс образования новых видов, сортов и пород. По характеру изменений генетического аппарата различают мутации, обусловленные:

1) изменением числа хромосом (полиплоидия, гетероплоидия, гаплоидия);

2) изменением структуры хромосом ( хромосомные аббербации);

3) изменением молекулярной структуры гена.

Полиплоидия и гетероплоидия (анэуплоидия).

Полиплоидия- увеличение диплоидного числа хромосом путем добавления (генные или точковые мутации) , целых хромосомных наборов. Половые летки имеют гаплоидный набор хромосом(n), а для зигот и всех соматических клеток характерен диплоидный набор(2n). У полиплоидных форм отмечается увеличение числа хромосом, кратное гаплоидному набору:3n - триплоид,4n - тетроплоид и т.д.

Гетероплоидия - это изменение числа хромосом, некратное гаплоидному набору. В диплоидном наборе может быть всего на 1 хромосому больше нормы, т.е. 2n+1 хромосома. Такие формы получили название трисомиков. Явление, противоположное трисомии, т.е. утрата одной хромосомы из пары в диплоидном наборе, называется моносомией, организм - моносомиком. Моносомики, как правило, отличаются пониженной жизнеспособностью или совсем нежизнеспособны.

Явление анэуплодии показывает, что нарушение нормального числа хромосом приводит к изменениям в строении и к снижению жизнеспособности организма.

Учение Дарвина об изменчивости.

Причину изменчивости он видел во влиянии окружающей среды. Он различал определенную и неопределенную изменчивость. Определенная изменчивость появляется у особей, подвергшихся какому-либо определенному, в ряде случаев более или менее легко обнаруживаемому, воздействию. Эта форма изменчивости называется модификационной. Неопределенная изменчивость (это мутации) проявляется, у определенных особей и происходит в самых различных направлениях.

При изучении проявления изменчивости Дарвин обнаружил взаимосвязь изменениями различных органов и их систем в организме. Эта изменчивость получила название коррелятивной, или соотносительной. Она заключается в том что изменение какого-либо органа влечет за собой всегда или почти всегда изменение других органов или их функций. В основе коррелятивной изменчивости лежит плейотропное действие генов.

Изменчивость вносит разнообразие в организмы, наследственность передает эти изменения потомкам.

ГЕНЕТИКА 1 . История развития генетических исследований.

 Истоки генетики, как и всякой науки, следует искать в практике. Генетика возникла в связи с разведением домашних животных и возделыванием растений, а также с развитием медицины. С тех пор как человек стал применять скрещивание животных и растений, он столкнулся с тем фактом, что свойства и признаки потомств зависят от свойств избранных для скрещивания родительских особей. Отбирая и скрещивая лучших потомков, человек из поколения в поколение создавал родственные группы - линии, а затем породы и сорта с характерными для них наследственными свойствами.

Генетика – наука о наследственности и ее изменчивости – получила развитие в начале XX в., после того как исследователи обратили внимание на законы Г. Менделя, открытые в 1865 г., но остававшиеся без внимания в течение 35 лет. В короткий срок генетика выросла в разветвленную биологическую науку с широким кругом экспериментальных методов и направлений. Ее бурное развитие было обусловлено как запросами сельского хозяйства, нуждавшегося в детальной разработке проблем наследственности у растений и животных, так и успехами биологических дисциплин, таких, как морфология, эмбриология, цитология, физиология и биохимия, подготовивших почву для углубленного изучения законов наследственности и материальных носителей наследственных факторов. Название генетика было предложено для новой науки английским ученым У. Бэтсоном в 1906 г.

Развитию науки о наследственности и изменчивости особенно сильно способствовало учение Ч. Дарвина о происхождении видов, которое внесло в биологию исторический метод исследования эволюции организмов. Сам Дарвин приложил немало усилий для изучения наследственности и изменчивости. Он собрал огромное количество фактов, сделал на их основе целый ряд правильных выводов, однако ему не удалось установить закономерности наследственности.

Его современники, так называемые гибридизаторы, скрещивавшие различные формы и искавшие степень сходства и различия между родителями и потомками, также не смогли установить общие закономерности наследования.

В истории развития генетики можно выделить три важных или основных этапа:

1) первый этап (с 1900 г. ~ до 1912 г.) – период триумфального шествия менделизма, утверждения открытых Менделем законов наследственности гибридологическими опытами, проведенными в разных странах на высших растениях и животных (лабораторных грызунах, курах, бабочках и др.), в результате чего выяснилось, что законы эти имеют универсальный характер. В течение немногих лет генетика оформилась как самостоятельная биологическая дисциплина и получила широкое признание.

2) Второй этап характеризуется переходом к изучению явлений наследственности на клеточном уровне, а также на данном этапе рассматривается феномен «лысенковщины».  Главной отличительной чертой второго этапа истории генетики (~ 1912 до 1925 г.) было создание и утверждение хромосомной теории наследственности. Ведущую роль в этом сыграли экспериментальные работы американского генетика Т.Моргана (1861-1945) и трёх его учеников – А.Стертеванта, К.Бриджеса, Г.Меллера, проведённые на плодовой мушке дрозофиле , которая благодаря ряду своих свойств (удобству содержания в лаборатории, быстроте размножения, высокой плодовитости, малому числу хромосом) стала с тех пор излюбленным объектом генетических исследований. 

3) Третий этап истории генетики (~ 1925 – 1940 г.) ознаменован в первую очередь открытием возможности искусственно вызвать мутации. До тех пор существовала ошибочная концепция, что мутации возникают в организме самопроизвольно, под влиянием каких-то чисто внутренних причин.

4) Наиболее характерными чертами четвёртого этапа истории генетики (1940-1955) было развитие работ по генетике физиологических и биохимических признаков и вовлечение в круг генетического эксперимента микроорганизмов и вирусов, что повысило разрешающую способность генетического анализа. Изучение биохимических процессов, лежащих в основе формирования наследственных признаков разных  организмов, пролило свет на то, как действуют гены и, в частности, привело к важному обобщению, сделанному американскими генетиками Дж. Бидлом и Э.Тэтумом, согласно которого всякий ген определяет синтез в организме одного фермента (эта формула: «один ген – один фермент»  впоследствии: «один ген – один белок»).

5)современный этап развития генетики    Для последнего современного этапа истории генетики, начавшегося приблизительно в середине 1950-х г., наиболее характерно исследование генетических явлений на молекулярном уровне благодаря внедрению в генетику новых химических, физических, математических подходов и методов, совершенных приборов и сложных реактивов.

В результате беспрецедентно быстрого прогресса в области молекулярной биологии и молекулярной генетики, появления в последнее десятилетие принципиально новых методов манипулирования с генетическим материалом, положивших начало генетической инженерии, был полностью раскрыт генетический код (в этой расшифровке большую роль сыграли работы Крика и его сотрудников в Англии, С.Очоа и М.Ниренберга в Америке),  удалось выделить отдельные гены и установить их нуклеиновую последовательность, понять тонкое строение генов различных про – эукариотов, изучить принципы регуляции генной активности. В 1969 г. в США Г.Корана с сотрудниками синтезировали химическим путём  вне организма первый простой по своей структуре ген (один из генов дрожжей), а в начале 1970-х годов в ряде американских лабораторий, а затем в лабораториях  других стран, в том числе в СССР, иным способом – с помощью особых ферментов – были синтезированы вне организма много гораздо более крупных и сложноустроенных генов про- и эукариотов.

достижения молекулярной биологии и связан с использованием методов и принципов точных наук - физики, химии, математики, биофизики и др.- в изучении явлений жизни на уровне молекул.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]