Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matiematika dlia ghikov - Rafaiel' Rouzien.docx
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
2.96 Mб
Скачать

Жан Батист Жозеф Фурье

Преобразование Фурье названо в честь Жана Батиста Жозефа Фурье, французского математика (1768–1830). Он его разработал, когда пытался определить, как тепло передается между твердыми телами.

3.15. Сколько цветов нужно, чтобы нарисовать карту? Математическое понятие: проблема четырех красок

Вы или ярый сторонник карт Google, или приверженец традиционных бумажных карт, но карты окружают нас повсюду. Они полезны и, несмотря на иногда возникающие трудности со складыванием, очень удобны. Зачастую они еще и очень красивые. (Посмотрите на карты из Средневековья, чтобы получить представление о художественности, которая вкладывалась в создание карт.) Карты также являются источником для одной из самых известных идей в математике: проблемы четырех красок.

Фрэнсис Гатри, английский студент, изучающий математику, впервые предложил проблему в 1852 году, когда пытался раскрасить карту округов Англии. Понимая, что ему необходимо всего четыре цвета, он задался вопросом, а нельзя ли применить это правило ко всем картам, даже к тем, которые еще не были созданы. Точнее говоря, Гатри интересовало, можно ли раскрасить карту, используя не больше четырех цветов, так, чтобы у двух граничащих территорий – округов, штатов, стран, чего угодно – не совпадали цвета. (Такие две территории должны иметь четкую границу. Если территории граничат углами, как штаты Юта и Нью-Мексико, то они не в счет.) Доказательство было наконец предоставлено в 1976 году, спустя 124 года после того, как Гатри задал этот вопрос, Кеннетом Аппелем и Вольфгангом Хакеном, математиками из Иллинойсского университета в Урбане-Шампейне. И хоть это было значительное достижение, доказательство вызвало неоднозначную реакцию в математическом сообществе, так как оно использовало компьютер.

Теорема греча

Немецкий математик Герберт Греч нашел доказательство, которое является продолжением проблемы четырех цветов: в плоском графе, если в нем нет треугольников (по существу, нет пунктов с тремя вершинами), теорема Греча утверждает, что вам нужно всего три цвета для достижения такого же результата.

3.16. Математика помогает создавать любимые детские фильмы Математические понятия: геометрия, алгоритмы

За последние несколько десятилетий компьютерная анимация шагнула далеко вперед, и самую большую эффективность в этом продвижении сыграли аниматоры из Pixar. Но компьютеры могут лишь следовать инструкциям, которые основаны на математике. Поэтому, когда перед аниматорами возникает новая проблема, такая, как изображение движения вьющихся волос Мериды из «Храброй сердцем», они обращаются за помощью к математике.

Pixar опирается на алгоритмы – наборы инструкций – для моделирования сложных объектов и поведения, и они поняли, что им потребуется совершенно новый набор для создания волос Мериды, которые будут состоять из 100 тысяч различных элементов. Насколько это будет сложно сделать? Согласно правилам комбинаторики – если существует n элементов, то существует путей для их столкновения, – существует 10 миллиардов вероятностей взаимодействия элементов волос Мериды.

В Pixar также впервые разработали математический метод для того, чтобы сглаживать острые края, а это крайне важно для изображения гладких контуров кожи и одежды. Компьютерные аниматоры создают трехмерные фигуры, используя многоугольники – фигуры, у которых есть как минимум три стороны, но на получаемых объектах появляются бороздки, как будто их сделали из блоков. С помощью их разбиения на более мелкие части аниматоры находят средние точки каждой из сторон и усредняют их. После многократных повторов этого действия блочные линии изображения с острыми краями превращаются в настоящие плавные кривые. Прямые линии становятся параболами, и на экранах появляется отличительная манера Pixar.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]