- •1. Структурная схема эмс и ее основные блоки
- •2. Эмс с позиции тау. Эпс как объект управления.
- •3. Задачи управления
- •4. Регуляторы
- •5. Принципы управления
- •6. Этапы проектирования сау эмс.
- •7. Цель и задачи дисциплины
- •Векторно-матричные математические модели эмс
- •Динамические характеристики канала 0 1
- •1. Пропорциональное регулирование
- •2.Интегральное регулирование
- •3. Пропорционально-интегральное (изодромное) регулирование
- •4. Регулирование по производным
1. Структурная схема эмс и ее основные блоки
Электромеханической системой ЭМС мы будем называть электромеханическое устройство, содержащее управляемый электри-ческий преобразователь УЭП, электромеханический преобразователь ЭМП, передаточный механизм ПМ, рабочий механизм (рабочий орган) РМ и устройство управления УУ. Структурная схема системы может быть представлена в следующем виде
Рис.1.1
Электромеханический преобразователь (электрический двигатель) ЭМП преобразует электрическую энергию на выходе электрического проебразователя в механическую энергию на своем валу. Эта энергия через передаточный механизм ПМ, содержащий механические передачи и соединительные муфты, передается рабочему механизму РМ. В ряде случаев ПМ может отсутствовать (в безредукторных системах) или входить конструктивно в состав рабочего механизма РМ.
Управляемый электрический преобразователь УЭП предназначен для управления потоком электрической энергии, поступающей из сети с целью регулирования режимов работы ЭМП. Управляющим воздействием является электрический сигнал Uу.
Управляющее устройство в ЭМС представляет собой информа-ционную слаботочную часть системы, предназначенную для обработки информации о задающих воздействиях и координатах состояния системыи выработки на ее основе сигнала управления преобразовательным устройством Uу с целью обеспечения желаемого характера изменения координат системы. В состав устройства управления входят измерительно-преобразовательные устройства ИПУ и регулятор Р. Выходные переменные силовой части системы и механизма измеряются и преобразуются в пропорциональные им электрические сигналы с помощью измерительно-преобразовательного устройства ИПУ. В его состав могут входить тахогенераторы, измерители положения, напряжения, тока, АЦП и ЦАП и т.п.
Основные узлы ЭПС-управляемый преобразователь электрической энергии УЭП, электромеханический преобразователь ЭМП, передаточное устройство ПУ и рабочий механизм РМ образуют энергетическую подсистему ЭПС.
Информационную подсистему ИПС образуют устройства управления УУ, а в ряде случаев и устройства диагностирования УД и защиты УЗ. Взаимосвязь информационных и энергетических подсистем обычно осуществляется по принципу обратной связи.
Наличие в ЭМС обратных связей приводит к необходимости описания и анализа ЭМС как многоконтурной и многосвязной системы. Указанное обстоятельство, а также то, что ЭМС являются автоматическими системами, работающими в режимах с непрерывным и дискретным управлением, заставляют при разработке математических моделей и методик анализа и синтеза ЭМС использовать методологию теории автоматического управления.
2. Эмс с позиции тау. Эпс как объект управления.
Рассматривая ЭМС как САУ выходной координатой, ее можно представить в виде простейшей структурной схемы
Рис.1.2
и выделить в ней объект управления ОУ и регулятор Р.
По ряду причин в качестве объекта управления мы будем рассматривать систему "УЭП-ЭМП-ПМ-РМ" или энергетическую подсистему ЭПС. Одна из них- периодическое изменение параметров и структуры силовой цепи и наличие нескольких коммутационных интервалов на периоде коммутации, приводящих к специфичным статическим и динамическим характеристикам. Это обстоятельство сложно учесть, представляя силовой канал двумя звеньями САР с независимыми и постоянными во времени параметрами.
В простом случае объекты управления, характеризующиеся вектором СОСТОЯНИЯ Y(t), имеют одну УПРАВЛЯЮЩУЮ переменную u(t), одну РЕГУЛИРУЕМУЮ координату X(t) и одно ВОЗМУЩАЮЩЕЕ воздействие W(t). (см. схему на рис. 1.2) В более сложных случаях объект является многоканальным, с несколькими управляющими и возмущающими воздействиями, несколькими регулируемыми координатами и с взаимосвязанными каналами.
По характеру переноса информации или энергии ЭПС как объекты управления можно разделить на
1. непрерывные объекты, преобразование энергии в которых происходит непрерывным потоком (Мат. модели их описываются дифференциальными уравнениями линейными или нелинейными, обыкновенными или в частных производных);
2. объекты с периодически возобновляемыми процессами преобразования (Мат. модели- дифф. уравнения с периодически изменяющимися коэффициентами или правыми частями или разностные уравнения).
