Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЗВИТ-2016.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.17 Mб
Скачать

2.1.2 Технічні характеристики різновидів озп

Дані про ПЗП різних типів модулів DDR2 приведені в таблиці 2.1.2.

Таблиця 2.1.2 - Порівняльна характеристика типів пам’яті

Тип пам'яті

DDR2-400

DDR2-533

DDR2-600

DDR2-667

DDR2-675

DDR2-800

DDR2-900

DDR2-1000

Специфікація пам'яті

PC3200

PC4300

PC4800

PC5300

PC5400

PC6400

PC7200

PC8000

Тактова частота, МГц

200

267

300

333

338

400

450

500

Ефективна частота, МГц

400

533

600

667

675

800

900

1000

ПЗП в одноканальному режимі, Гбайт/с

3,2

4,3

4,8

5,3

5,4

6,4

7,2

8,0

ПЗП в двоканальному режимі, Гбайт/с

6,4

8,6

9,6

10,6

10,8

12,8

14,4

16,0

2.1.3 Принцип роботи оперативної пам’яті

DDR - абревіатура, що говорить про подвійну швидкість передачі даних. Раніше широко застосовувалася пам'ять SDR (Single Data Rate), яка за один такт передає рівно одну порцію інформації. DDR встигає зробити удвічі більше, оскільки пересилає дані двічі - по обох фронтах тактового імпульсу. Прискорення передачі у пам'яті DDR2 відносно DDR пов'язане з підвищенням тактової частоти буферів вводу-виводу і існує в умовах мультиплексування. Тобто контролер-мультиплексор прочитує дані відразу з 4 банків пам'яті. Таким чином, в модулях DDR2 SDRAM в порівнянні з DDR SDRAM застосована технологія збільшення продуктивності за рахунок підвищення тактової частоти при збереженні робочих частот самих мікросхем і тієї ж розрядності шини даних.

Добиваючись прискорення за рахунок яких-небудь внутрішніх ресурсів, ми, як часто це відбувається, в чомусь програємо. Згаданий вище метод збільшення продуктивності стає причиною підвищення латентності. Це пояснюється, по-перше, наявністю схеми мультиплексування і, по-друге, невисокими тактовими частотами самих чіпів пам'яті.

Крім всього іншого, DDR2 SDRAM випускається в корпусах FBGA, які дозволяють поліпшити частотні характеристики, а також підвищити ступінь тепловіддачі. У конструкції модулів застосована схема On-die-termination. Подібні технології дозволяють також збільшити і об'єм модулів пам'яті.

Інформація про організацію, розмір і допустимі можливості пам'яті міститься в розташованому на модулі спеціальному чіпі - SPD (Serial Presence Detect). Вона зчитується BIOS для автоматичного завантаження оптимальних настройок ОЗУ. Тим самим, коли ви вперше заходите в BIOS Setup, то всі параметри, пов'язані з пам'яттю, які ви виявите, будуть узяті з SPD. Змінюючи їх в розумних межах, можна спробувати "розігнати" пам'ять шляхом збільшення частоти або зменшення таймінгів.

Найбільш пріоритетним напрямом розвитку технології оперативної пам'яті DDR SDRAM вже який рік підряд є подальше збільшення її пропускної спроможності (безпосередньо залежною від її тактової частоти) і зниження затримок. На другому місці по важливості, мабуть, розташовується зменшення її енергоспоживання і, нарешті, збільшення ємкості окремих компонентів (мікросхем) і модулів пам'яті в цілому. Мабуть, реалізація першого напряму вважається найбільш важливою, у зв'язку з чим відбувається практично безперервно, тоді як реалізація останніх з перерахованих вище завдань, як правило, вимагає певного еволюційного стрибка в технологічному розвитку (наприклад, переходу від технології DDR до технології DDR2). Дійсно, просте збільшення частоти шини пам'яті позначається на її енергоспоживанні явно не позитивним чином, тому для вирішення завдання зниження енергоспоживання потрібні інші підходи. Більш того, ситуація, як правило, ускладнюється тим, що рішення цієї задачі в певній мірі протирічить «генеральній лінії» розвитку технологій пам'яті, яка, нагадаємо, полягає в досягненні все більшої пропускної здатності (частоти) і все менших затримок. І справді, добре відомо, що перші варіанти пам'яті типу DDR2 відчутно програвали їх «рівночастотним» аналогам типу DDR по затримках. Проте, необмежене зростання частот (і зниження затримок) в рамках однієї і тієї ж технології пам'яті неможливе - воно обмежене цілком певними фізичними причинами (перш за все, тепловиділенням), тому «еволюційні стрибки» в розвитку технологій пам'яті все ж таки необхідні.

Так йшла справа при першому еволюційному стрибку в розвитку технологій пам'яті DDR SDRAM - переході від DDR до DDR2. Перші зразки DDR функціонували на частоті всього 100 Мгц (і мали рейтинг DDR-200), потім частота поступово збільшилася до 200 Мгц (DDR-400). Відбувалося одночасне зменшення затримок. Потім з'явилися і більш високочастотні модулі пам'яті DDR (аж до 300 Мгц, тобто DDR-600), проте офіційно вони так і не були прийняті стандартом JEDEC. Збільшення частоти модулів пам'яті, або зниження затримок вимагало підвищення напруги живлення із стандартного рівня 2.5 В до значень порядку 2.85 В, проблема надмірного тепловиділення вирішувалася, як правило, застосуванням звичайних тепловідводів.

Коли подальше збільшення тактових частот пам'яті DDR виявилося практично неможливим, на ринку оперативної пам'яті з'явилося нове, друге покоління пам'яті DDR SDRAM - пам'ять DDR2, яка поступово почала доводити свою конкурентоспроможність і поволі, але впевнено витісняти «старе» покоління пам'яті DDR. Первинні варіанти DDR2 були представлені частотами 200 Мгц (DDR2-400) і 266 Мгц (DDR2-533) - так би мовити, DDR2 почала свій розвиток там, де закінчила свій розвиток DDR. Більш того, первинний стандарт DDR2 передбачав набагато більш високочастотні варіанти, в порівнянні із звичною DDR - 333-мгц модулі типу DDR2-667 і 400-мгц варіант DDR2-800. При цьому мікросхеми DDR2 були засновані на новому технологічному процесі, що дозволяє використовувати напругу живлення всього 1.8 В (що було одним з чинників зниження їх енергоспоживання) і досягати вищих ємкостей компонентів і, отже, модулів пам'яті. 7