- •12Взаимодействие возбуждения и торможения (иррадиация, концентрация и индукция нервных процессов)
- •24Гемодинамический центр и его структура. Рецепторы сердечно-сосудистой системы. Тонус центров, регулирующих систему кровообращения.
- •33) Гуморальная регуляция. Классификация гуморальных агентов и эндокринных желёз. Биохимическая природа гормонов.
- •34) Давление в плевральной полости, его происхождение, изменение при дыхании и роль в механизме внешнего дыхания. Опыт Дондерса. Пневмоторакс.
- •35) Динамический стереотип
- •36) Дистальная реабсорбция. Сдвиги при гидремии и дефиците воды. Механизмы реабсорбции натрия. Функция канальцев. Синтез веществ в почках.
- •37) Диурез. Состав мочи. Мочевыведение и мочеиспускание.
- •38) Дыхательный центр (н.А.Миславский). Современное представление о его структуре и локализации
- •40) Женский половой цикл длится 28±3 дня и делится на 4 периода.
- •42) Законы проведения возбуждения по нервам.
- •43) Закон физиологического электротона(2 закон Пфлюгера) – закон об изменении физиологических свойств тканей при прохождении через них постоянного тока:
- •47) Изменение мп при действии подпороговых раздражителей
- •Электротонический потенциал
- •Локальный ответ
- •Изменение возбудимости клетки во время ее возбуждения
- •51) . Регуляция системной гемодинамики Основные принципы регуляции системного кровообращения
- •52) Лассификация раздражителей
- •53) Классификация рефлексов. Рефлекторный путь. Обратная афферентация и её значение. Понятие о приспособительном результате.
- •69)Механизм регуляции функций при помощи метасимпатической нервной системы открыл в 1983 г. Академик а.Д. Ноздрачев.
- •79) Вегетативная нервная система отличается от соматической:
- •104 Гормоны оказывают на организм и его функции различные воздействия.
- •108) Особенности возбуждения в сердечной мышце
- •110) Собенности нейронной организации ретикулярной формации и её нисходящее влияние на спинной мозг.
- •120) Пищеварительными функциями желудка являются:
- •128)Половая
- •130 Постсинаптическое торможение
- •136) Факторы, обеспечивающие непрерывность кровотока.
- •137) Проводящая система сердца:
- •139) Продолговатый мозг, его нейронная организация, участие нейронов заднего мозга в процессах саморегуляции функций.
- •140) В состав промежуточного мозга входит таламическая область и гипоталамус Таламическая область состоит из таламуса, метаталамуса (коленчатые тела) и эпи-таламуса.
- •142) Проприорецепция
- •146) Реакция крови (рН), поддержание её постоянства. Буферные системы крови. Гематокрит и соэ, методы их определения
- •150) Регуляция изотермии при низких и высоких температурах. Характеристика терморецепторов. Гипо- и гипертермия.
- •152) Регуляция объёма циркулирующей крови. Кровяные депо. Капилляры
- •159) Рефлекторная регуляция кровообращения. Рецепторы ссс. Влияние на гемодинамику коры больших полушарий. Сопряженные рефлексы ссс, их механизмы.
- •187) Сосудисто-тромбоцитарный гемостаз
- •224) .Гормоны щитовидной и околощитовидной желез и их биологическая роль.
128)Половая
129) После удаления одной почки у человека и животных в течение нескольких недель увеличивается масса оставшейся почки - наступает ее компенсаторная гипертрофия. Клубочковая фильтрация возрастает в оставшейся почке почти в 1,5 раза по сравнению с исходным уровнем, увеличивается реабсорбция продуктов азотистого обмена, содержание мочевины может увеличиваться в 20-30 раз, нарушаются кислотно-основное состояние и ионный состав крови, развиваются слабость, расстройство дыхания. При полном прекращении мочеобразования через несколько дней наступает смерть.
Для временного замещения некоторых функций почек во время острой и хронической почечной недостаточности, а также постоянно у больных с удаленными почками используется аппарат, получивший название «искусственная почка». Он представляет собой диализатор, в котором через поры полупроницаемой мембраны кровь очищается от шлаков, в результате чего нормализуется ее состав. Сконструированы десятки различных типов аппаратов искусственной почки - спиральный, улиточный, пластинчатый. В этих аппаратах используют пленки, радиус пор в которых около 3 нм. Через эти поры проходят (как и в почечном клубочке) низкомолекулярные компоненты плазмы, но не проникают белки. По одну сторону пленки непрерывно протекает кровь пациента, поступающая из артерии и после прохождения через аппарат вливаемая в его вену, по другую сторону находится диализирующий раствор. Он по ионному составу и осмотической концентрации подобен плазме крови. Больного подключают к аппарату искусственной почки обычно 2-3 раза в неделю. С помощью этого метода удается поддерживать жизнь больных более 20 лет. Один сеанс гемодиализа длится несколько часов. Важную роль в проведении регуляторных гемодиализов сыграло использование артерио-венозных шунтов, которые вживляют в лучевую артерию и вену предплечья, в результате чего исчезает необходимость хирургических операций перед каждым сеансом гемодиализа. В клинике гемодиализ иногда сочетают с гемосорбцией, что дает возможность дополнительно удалить из крови ряд веществ, которые должна была бы экскретировать почка.
130 Постсинаптическое торможение
Этот вид торможения открыл Д.Экклс (1952) при регистраци потенциалов мотонейронов спинного мозга у кошки во время сокращения и расслабления мышцы в ходе реализации соответствующих рефлекторных актов. Оказалось, что при рефлекторном расслаблении мышц на мотонейронах регистрируется гиперполяризационный постсинаптический потенциал, уменьшающий возбудимость мотонейрона, угнетающий его способность реагировать на возбуждающие влияния. Поэтому вызванный гиперполяризационный потенциал был назван тормозным постсинаптическим потенциалом (ТПСП).
¢ Возвратное постсинаптическое торможение - это такое торможение, когда тормозные вставочные нейроны действуют на те же нервные клетки, которые их активируют.
¢ Латеральное постсинаптическое торможение. Тормозные вставочные нейроны соединены таким образом, что они активируются импульсами от возбужденного центра и влияют на соседние клетки с такими же функциями.
¢ Подобную роль может играть и параллельное торможение, когда возбуждение блокирует само себя за счет дивергенции по коллатерали с включением тормозной клетки на своем пути и возвратом импульсов к нейрону, который активировался этим же возбуждением.
¢ Примером прямого торможения может служить реципроктное торможение. Оно вызывает угнетение центра-антагониста.
131)ПД- впервые открыл Маттеучи(1837г) в опыте вторичного сокращения. Нерв 2 препарата лягушки набрасывали на мышцу 1, а нерв первого раздражали током: сокращались обе мышцы. Сокращение второй мышцы происходило в результате раздражения этой мышцы током, возникающим при сокращении 1 мышцы. Все клетки организма имеют заряд – ПП, обеспечиваемый неодинаковой концентрацией анионов и катионов внутри и вне клетки. Различие концентрации является следствием работы ионных насосов и неодинаковой проницаемости клеточной мембраны для разных ионов. При действии раздражителя на клетку возбудимой ткани вначале повышается проницаемость мембраны для натрия и быстро возвращается в норму. Затем то же самое происходит с калием, вследствие чего Na быстро перемещается в клетку, а К+ выходит из клетки согласно электрохимическому градиенту. Возникает процесс возбуждения –ПД. ПД- быстрое колебание величины мембранного потенциала, вследствие активации и инактивации ионных каналов и диффузии ионов в клетку и из клетки. Величина ПД колеблется в пределах 80-130мВ(у нервного 110мВ, у мышечного до 130мВ)Амплитуда ПД не зависит от силы раздражения. Она всегда максимальна для данной клетки в конкретных условиях(Закон все или ничего) Фаза деполяризации: уменьшение заряда клетки до нуля.Она развивается при действии деполяризующего раздражителя на клетку(эл.ток). Открываются ворота натриевых каналов. Когда деполяризация достигает КУД – открывается большое число натриевых каналов и натрий лавинообразно входит в клетку.Фаза инверсии:- изменение заряда клетки на противоположный. Имеет 2 части: восходящую и нисходящую. Восходящая обеспечивается в основном входом натрия в клетку. Нисходящая- закрытие натриевых каналов и выход калия на мембрану. Фаза реполяризации: восстановление ПП. Калий продолжает выходить из клетки по концентрационному градиенту. Теперь клетка снова имеет внутри отрицательный заряд, а снаружи положительный и электрический градиент препятствует выходу калия из клетки. Т.о. вся нисходящая часть ПД обусловлена выходом К+ из клетки. 24. Ионная природа потенциала действия. Теория Бернштейна и А.Ходжкина. Ионные каналы. Величина потенциала действия в разных тканях.
Пpиpоду возникновения мембpанного потенциала обьясняет мембpанно-ионная теоpия (пpедложил Ю.Беpнштейн, модифициpовали – А.Ходжкин, А.Хаксли, Б.Катц).
Теоpия основывается на:
1. Особенностях стpоения биологической мембpаны
2. Устойчивой тpансмембpанной ионной ассиметpии (неодинаковой концентpацией ионов Na+,K+,Cl-,Ca2+,HCO3-)
132) Физиология - наука, изучающая закономерности функционирования живых организмов, их отдельных систем, органов, тканей, клеток. Физиология изучает происхождение и развитие функций организма, их эволюцию в процессе индивидуального развития организма, механизмы функционирования, взаимодействие организма с окружающей средой, поведение организма в различных условиях существования.
1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом
2. Изучение механизмов регуляции функций органов и систем организма.
3. Выявление реакций человеческого организма и его систем на изменение внешней и внутренней среды.
133) Пресинаптическое торможение первоначально было выявлено также в спинном мозге в опыте с регистрацией активности мотонейронов моносинаптической рефлекторной дуги при раздражении антагонистических мышечных нервов (Фрэнк, Фоуртес). Так, известно, что раздражение первичных афферентов мышечных веретен сопровождается возбуждением гомонимных α-мотонейронов (α-мотонейронов этой же мышцы). Однако опережающее раздражение афферентов сухожильных рецепторов мышц-антагонистов предотвращает возбуждение активируемых α-мотонейронов (рис. 4.11). Интересно, что мембранный потенциал и возбудимость исследуемых α-мотонейронов не изменялись либо регистрировался низкоамплитудный ВПСП, недостаточный для возникновения ПД (рис. 4.11, в). Поскольку в опыте исследовались мотонейроны в составе моносинаптической рефлекторной дуги, было очевидно, что они не возбуждаются вследствие процессов, происходящих в пресинаптическом окончании, что определяет название этого вида торможения.
Механизм пресинаптического торможения. Электрофизиологическое изучение процессов на уровне пресинаптических окончаний в вышеописанном опыте показало, что здесь регистрируется выраженная и продолжительная деполяризация, которая ведет к развитию торможения. В очаге деполяризации нарушается процесс распространения возбуждения, следовательно, поступающие импульсы, не имея возможности пройти зону деполяризации в обычном количестве и с обычной амплитудой, не обеспечивают выделение медиатора в синаптическую щель в достаточном количестве, поскольку мало ионов Са2+ входит в нервное окончание – постсинаптический нейрон не возбуждается, его функциональное состояние, естественно, остается неизменным. Деполяризацию пресинаптической терминали вызывают специальные тормозные вставочные клетки, аксоны которых образуют синапсы на пресинаптических окончаниях аксона-мишени. Торможение (деполяризация) после одного афферентного залпа продолжается 300–400 мс, медиатором является ГАМК, которая действует на ГАМК1-рецепторы.
Деполяризация является следствием повышения проницаемости для Cl–, в результате чего он выходит из клетки. Этот факт свидетельствует о том, что в составе мембран пресинаптических терминалей имеется хлорный насос, обеспечивающий транспорт Cl– внутрь клетки вопреки электрическому градиенту. Под действием ГАМК тормозных нейронов и последующего повышения проницаемости мембраны для Cl– ионы Cl– начинают выходить наружу согласно электрическому градиенту. Это приводит к деполяризации пресинаптических терминалей и ухудшению их способности проводить импульсы.
Полагают также, что деполяризация пресинаптических терминалей может возникнуть при накоплении К+ в межклеточной жидкости в результате повышенной активности нервных окончаний и соседних нервных клеток. В этом случае также ухудшается проводимость пресинаптических терминалей из-за устойчивого снижения мембранного потенциала в связи с уменьшением концентрационного градиента для К+. Роль ГАМК2-рецепторов на пресинаптических окончаниях изучена недостаточно.
134) У млекопитающих и человека основная роль в формировании условных рефлексов принадлежит коре. При их выработке от периферических рецепторов, воспринимающих условный и безусловный раздражители, нервные импульсы по восходящим путям поступают в подкороковые центры, а затем те зоны коры, где находится представительство данных рецепторов. В нейронах этих 2-х участков коры возникают биопотенциалы, Они совпадают по времени, частоте и фазе. По межкортикальным путям происходит циркуляция, т.е. реверберация нервных импульсов. В результате синаптической потенциации активизируются синаптические связи, расположенные между нейронами той и другой зоны коры. Улучшение проведения закрепляется, возникает временная или условно-рефлекторная связь
Условные рефлексы (У.Р.) - это индивидуально приобретённые в процессе жизнедеятельности реакции организма на раздражение. Создатель учения об условных рефлексах И.П. Павлов называл их временной связью раздражителя с ответной реакцией, которая образуется в организме при определённых условиях. Свойства условных рефлексов:
1. Формируются в течение всей жизни в результате взаимодействия индивида с внешней средой.
2. Не отличаются постоянством и без подкрепления могут исчезать
3. Не имеют постоянного рецептивного поля
4. Не имеют постоянной рефлекторной дуги
5. Для возникновения условнорефлекторной реакции не требуется действие специфического раздражителя.
Пример условного рефлекса - выработка слюноотделения у собаки на звонок. Условные рефлексы образуются только при определённом сочетании свойств раздражителя и внешних условий. Для выработки условного рефлекса используется сочетание условного раздражителя и подкрепляющего безусловного. Индифферентным называется такой раздражитель, который в естественных условиях не может вызвать данную рефлекторную реакцию, а безусловным - специфический раздражитель, который всегда вызывает возникновение этого рефлекса. Для выработки условных рефлексов необходимы следующие условия:
1. Действие условного раздражителя должно предшествовать воздействию безусловного.
2. Необходимо многократное сочетание условного и безусловного раздражителей.
3. Индифферентный и безусловный раздражители должны иметь сверхпороговую силу.
4.В момент выработки условного рефлекса должны отсутствовать посторонние внешние раздражения.
5.Ц.Н.С. должна быть в нормальном функциональном состоянии.
По афферентному звену условнорефлекторной дуги, т.е. рецепторам выделяют экстерорецептивные и интерорецептивные условные рефлексы, Экстерорецептивные возникают в ответ на раздражение внешних рецепторов и служат для связи организма с внешней средой. Интерорецептивные - на раздражение рецепторов внутренней среды. Они необходимы для поддержания постоянства внутренней среды.
По эфферентному звену условнорефлекторной дуги выделяют двигательные и вегетативные условные рефлексы. Пример двигательного - отдёргивание лапы собакой на звук метроном, если последний предшествует болевому раздражения лапы. Пример вегетативного - слюноотделение на звонок у собаки.
135) Пристеночное пищеварение и его значение.Вещества из полости тонкой кишки поступают в слой кишечной слизи, обладающей более высокой ферментативной активностью, чем жидкое содержимое полости тонкой кишки.
В слизистых наложениях адсорбированы ферменты из полости тонкой кишки (панкреатические и кишечные), из разрушенных энтероцитов и транспортированные в кишку из кровотока. Проходящие через слизистые наложения питательные вещества частично гидролизуются этими ферментами и поступают в слой гликокаликса, где продолжается гидролиз питательных веществ по мере их транспорта в глубь пристеночного слоя. Продукты гидролиза поступают на апикальные мембраны энтероцитов, в которые встроены кишечные ферменты, осуществляющие собственно мембранное пищеварение, в основном гидролиз димеров до стадии мономеров. Следовательно, пристеночное пищеварение последовательно идет в трех зонах: слизистых наложениях, гликокаликсе и на апикальных мембранах энтероцитов с огромным числом микроворсинок на них. Образовавшиеся в результате пищеварения мономеры всасываются в кровь и лимфу.
