- •1.Понятие об электроприемниках и потребителях электроэнергии.
- •2 Основные характеристики приемников и потребителей электроэнергии:
- •2,3 Номинальные напряжения.
- •2.1.Режимы работы электроприемников по нагреву: продолжительный, кратковременный, повторно-кратковременный
- •2,4 Род и частота тока
- •2,5 Категории электроприемников по надежности электроснабжения.
- •2.6 Коэффициенты, характеризующие режимы работы электроприемников: использования, включения, загрузки, максимума и спроса.
- •3 Определение расхода электроэнергии, потребляемой мощности и часовой производительности оборудования???
- •4 Расходные характеристики промышленных электроприемников
- •5 Установленная мощность, средние, среднеквадратические, максимальные и расчётные электрические нагрузки
- •7 Определение расчетных нагрузок по коэффициенту спроса и установленной мощности.
- •8 Определение расчетных нагрузок по удельной нагрузке на единицу производственной площади.
- •9 Определение расчетных нагрузок по удельному расходу электроэнергии на единицу продукции
- •10 Статистический метод определения расчетных нагрузок
- •11 Пиковые нагрузки.
- •12 Назначение основных коммутационных и защитных аппаратов до 1кВ.
- •13. Принципы защиты электрических сетей напряжением до 1 кВ от сверхтоков.
- •15 Времятоковые характеристики защитных аппаратов напряжением до 1кВ.
- •16 Выбор защитных аппаратов по условию селективности.
- •17 Расчет электрических сетей напряжением до 1кВ по допустимой потере напряжения.
- •18 Провода и кабели, применяемые в электрических сетях напряжением до 1кВ.
- •19 Схемы силовых и осветительных электрических сетей: радиальные, магистральные, смешанные. Модульные сети.
- •20 Классификация электрических сетей до 1кВ по конструктивному исполнению.
- •21 .Выбор сечений проводников по допустимому нагреву.
- •22 Проверка выбранного сечения по условию соответствия аппарату максимальной токовой защиты
- •23 Выбор сечения нулевых рабочих и защитных проводников
- •25 Силовые общепромышленные электроприемники: насосы, компрессоры, вентиляторы, подъемно-транспортные машины и поточно-транспортные системы.
- •26 Электроприемники с электродвигателями в металлообработке, машиностроении и станкостроении.
- •27 Электротехнологические установки
- •28 Преобразовательные установки
- •29.Электроприемники в металлургической промышленности.
- •30 Характерные электроприемники в текстильной и легкой промышленности
- •31 Взаимосвязи между потребителями электроэнергии и энергосистемой
- •33 Показатели качества электрической энергии (пкэ). Характеристика и нормирование
- •32 Электромагнитная совместимость. Основные понятия. Источники электромагнитных воздействий
- •34 Элементы для выравнивания потенциалов и ограничения перенапряжения и их параметры.
- •36 Экранирование кабелей. Режимы работы экрана (электромагнитный, магнитостатический, электростатический).
- •37.Электромагнитная обстановка на энергетических и промышленных объектах.
- •38 Экологическое и техногенное влияние электромагнитных полей
34 Элементы для выравнивания потенциалов и ограничения перенапряжения и их параметры.
Электромеханические устройства работают слишком медленно. Ниже рассмотрим элементы, пригодные для защиты от перенапряжений, а также отметим их преимущества и недостатки. Газонаполненные разрядники. Специально для телекоммуникационных устройств уже десятки лет изготавливаются газонаполненные разрядники. Эти разрядники, несмотря на малые размеры, имеют очень большие мощности. Газонаполненные разрядники способны пропускать токи переходных процессов в десятки килоампер (импульс 8/20 мкс). Разрядник состоит из малой стеклянной или керамической трубочки, по обоим концам которой расположены металлические электроды. Герметичное газоразрядное пространство между этими электродами заполнено благородным газом, преимущественно аргоном или неоном.
Варистор состоит из большого числа последовательно и параллельно соединенных диодов. В то время как раньше использовались только варисторы из карбида кремния, в последние годы применяются, как правило, оксидно-цинковые варисторы (ZnO).
Грозовой разряд несет большую энергию, которую способен поглотить только искровой разрядник.
36 Экранирование кабелей. Режимы работы экрана (электромагнитный, магнитостатический, электростатический).
Экранированием называется локализация электромагнитного поля в определенном пространстве путем ограничения его распространения всеми возможными способами
● Электромагнитный экран – конструкция, предназначенная для ослабления электромагнитных полей, создаваемых какими-либо источниками в некоторой области пространства, не содержащей этих источников
Электростатическое экранирование ● Электростатическое экранирование состоит в шунтировании паразитной емкости (между источником и приемником наводок) на корпус ● Эффективность не зависит от толщины и металла экрана – часто электростатические экраны – тонкий слой металлизированного диэлектрика тонкого слоя – в трансформаторах часто экран выполняют в виде не замкнутого кольца из медной фольги или обмоток, один конец которых заземлен
35 Источники электромагнитных помех на электрических станциях и подстанциях. Классификация
В качестве электромагнитной помехи (ЭМП) может фигурировать практически любое электромагнитное явление в широком диапазоне частот. Прежде чем переходить к рассмотрению влияния ЭМП на электронную аппаратуру, попытаемся ввести некоторую классификацию ЭМП.
В зависимости от источника ЭМП можно разделить на естественные и искусственные. Наиболее распространенной естественной ЭМП является электромагнитный импульс при ударе молнии. Искусственные помехи можно разделить на создаваемые функциональными источниками и создаваемые нефункциональными источниками. Функциональным источник помехи будем называть в случае, если для него самого создаваемая ЭМП является полезным сигналом. К таким источникам относятся, прежде всего, передающие устройства радиосвязи, а также аппаратура, использующая цепи питания для передачи информации. Электростатический разряд с тела человека также может рассматриваться как создаваемый нефункциональным источником ЭМП. Принципиальное различие между функциональными и нефункциональными источниками состоит в том, что для вторых уровень ЭМП часто можно снизить путем пересмотра конструкции источника, в то время как для функциональных ЭМП такой путь обычно исключается.
В зависимости от среды распространения ЭМП могут разделяться на индуктивные и кондуктивные. Индуктивными называют ЭМП, распространяющиеся в виде электромагнитных полей в непроводящих средах. Кондуктивные ЭМП представляют собой токи, текущие по проводящим конструкциям и земле.
Широкополосные помехи имеют существенно несинусоидальный характер и обычно проявляются в виде либо отдельных импульсов, либо их последовательности. Для периодических широкополосных сигналов спектр состоит из большого набора пиков на частотах, кратных частоте основного сигнала. Для апериодических помех спектр является непрерывным и описывается спектральной плотностью. Типичными широкополосными помехами являются:
· шум, создаваемый в сети питания аппаратуры при работе импульсного блока питания;
· молниевые импульсы;
· импульсы, создаваемые при коммутационных операциях;
· ЭСР.
