- •1 Анализ существующих систем определения местоположения, диагностики, контроля и состояния транспорта…. 10
- •Перечень принятых сокращений, символов и терминов
- •Введение
- •Анализ существующих систем определения местоположения, диагностики, контроля и состояния транспорта
- •Концепция построения систем определения местоположения и мониторинга, диагностики, контроля и состояния транспортных средств
- •Принцип построения и функционирования спутниковых радионавигационных систем
- •Архитектура сотовой сети связи стандарта gsm, описание основных подсистем, блоков, и устройств
- •Сравнительный анализ аналогов разрабатываемой системы
- •Обзор современного оборудования, предназначенного для спутникового мониторинга транспортных средств
- •Обоснование требований заданий на дипломное проектирование
- •Разработка, обоснование структурной схемы автомобильного устройства
- •Структурная схема автомобильного устройства
- •Выбор и обоснование структурных схем основных функциональных блоков приемника спутниковых радиосигналов
- •Разработка и анализ структурной схемы gsm модуля
- •Расчет параметров проектируемого устройства
- •Энергетические потери при распространении спутниковых радионавигационных сигналов
- •Определения радиуса зоны обслуживания базовой станции стандарта gsm-900
- •Технико-экономическое обоснование эфективности серийного выпуска автомобильного устройства системы экстренного реагирования «эра-рб»
- •Характеристики автомобильного устройства системы экстренного реагирования «эра-рб»
- •Расчет себестоимости отпускной цены автомобильного устройства системы экстренного реагирования «эра-рб»
- •Расчет чистой прибыли от серийного выпуска
- •Расчет инвестиций в прирост оборотных активов
- •Расчет показателей экономической эффективности серийного выпуска
- •Выводы об эффективности серийного производства
- •Ресурсо – и энергосбережение. Сокращение энергозатрат при внедрении проектируемой автоматизированной системы
- •Заключение
- •Список использованных источников
Обоснование требований заданий на дипломное проектирование
Для выбора параметров устройства, разрабатываемого в данной дипломной работе, технологий спутниковой навигации и связи использовались стандарты, рекомендации и другие нормативные документы, опубликованные различными международными организациями в сфере телекоммуникаций и стандартизации.
Главным руководящим документом, в котором представлены общие технические требования, предъявляемые к оборудованию систем сотовой подвижной электросвязи, работающему на территории нашей республики, является Государственный стандарт Республики Беларусь СТБ 1356-2011 [6].
Этот стандарт устанавливает требования к параметрам электромагнитной совместимости радиоэлектронных средств (РЭС) и требования к параметрам излучения РЭС, а также требования по эффективному использованию радиочастотного спектра.
Согласно этому документу для оборудования мобильной станции стандарта E 900/1800 предусмотрены следующие полосы частот:
- 890 – 915 МГц для передачи от мобильной станции (МС) к базовой станции (БС) и 935 – 960 МГЦ для приема сигнала от БС в диапазоне 900 МГц;
- 1710 – 1785 МГЦ для передачи сигнала от МС к БС и 1805 – 1880 МГц для приема сигнала от БС в диапазоне 1800 МГц.
Все технические параметры для оборудования МС в стандарте СТБ 1356-2011 приведены в соответствии со спецификацией TS 25.101, 2009, разработанной Европейским институтом телекоммуникационных стандартов [7].
Мощность передатчика в телефоне ограничена максимум 2 Вт в GSM 900 и 1 Вт в GSM 1800 в соответствии с данным документом. Чувствительность приемника ограничивается значением -102 дБм. При формировании сигнала применяются следующие виды модуляции: GMSK, 8-PSK, QPSK, 16-QAM, 32-QAM. Допустимая пиковая скорость, которая используется для передачи данных от МС к БС составляет 270,833 кбит/с.
Основные технические требования для приемного оборудования спутниковой навигационной системы приведены в интерфейсном контрольном документе NAVSTAR GPS Space Segment / Navigation User Interfaces (ICD-GPS-200).
Спутники излучают открытые для использования сигналы в диапазонах: L1=1575,42 МГц и L2=1227,60 МГц L5=1176,45 МГц. Навигационная информация может приниматься антенной (обычно в условиях прямой видимости спутников) и обрабатываться при помощи GPS-приёмника.
Сигнал с кодом стандартной точности (C/A код — модуляция BPSK), передается в диапазоне L1 и сигнал L2C (модуляция BPSK) в диапазоне L2, распространяется без ограничений на использование. Точность определения координат составляет около 10 метров у гражданских пользователей. Чувствительность приемника в диапазоне L1 для кода С/A составляет не менее -160 дБм.
На сегодняшний день большинство современных производителей выпускают автомобили со встроенной CAN-сетью для связи исполнительных устройств автомобиля с электронным блоком управления. Для контроля состояния данных элементов в разрабатываемом устройстве предусмотрен интерфейс для соединения с CAN-шиной, что позволить подключить его к бортовой сети автомобиля. Основные технические параметры протокола CAN приведены в стандарте ISO 15765-4[10].
В стандарте ISO 11898 определено, что в данном случае CAN-сеть имеет топологию «шина» с физическим уровнем в виде дифференциальной пары. Передача осуществляется кадрами, которые принимаются всеми узлами сети. Синхронная шина, с типом доступа Collision Resolution (CR), который детерминировано (приоритетно) обеспечивает доступ на передачу сообщения, что особо ценно для промышленных сетей управления. Полезная информация в кадре состоит из идентификатора длиной 11 бит (стандартный формат) или 29 бит (расширенный формат, надмножество предыдущего) и поля данных длиной от 0 до 8 байт. Идентификатор говорит о содержимом пакета и служит для определения приоритета при попытке одновременной передачи несколькими сетевыми узлами.
Вероятность появления ошибки передачи составляет 4,7×10-11. Согласно стандарту ISO 15765-4 при длине сети не более 40 метров и при использовании среды передачи в виде дифференциальной пары максимальная скорость передачи данных достигает 1 Мбит/c.
В разрабатываемой системе для подключения контрольных датчиков, организация связи с которыми затруднена или невозможна при помощи проводных линий, предусмотрена возможность построения беспроводной сети на основе стандарта Bluetooth. Требования к параметрам сети и используемым устройствам в данном стандарте приведены в спецификации IEEE 802.15.1[11]. Согласно этому документу Bluetooth-устройства могут обмениваться данными, когда они находятся в радиусе до 200 метров друг от друга (дальность сильно зависит от преград и помех), даже в разных помещениях. В таких сетях применяется свободный от лицензирования диапазон 2,4-2,4835 ГГц. Весь диапазон разделен на 79 частот , с шириной полосы 1МГц. В новой версии два Bluetooth-устройства могут устанавливать соединение с максимальным значением скорости передачи данных 1 Мбит/c менее чем за 5 миллисекунд и поддерживать его на расстоянии до 100 м.
В настоящее время большинство датчиков, установленных на автомобилях, имеют на выходе цифровой сигнал с разрешением 1024 - 4096 уровней, поэтому в проектируемой системе предусмотрен вход для цифровых устройств с разрядностью цифрового сигнала до 12 бит.
