Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Цитология.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
172.34 Кб
Скачать

Цитология Клеточная теория — это обобщенное представление о строении клеток как единиц живого, об их воспроизведении и роли е формировании многоклеточных организмов. ). Основные положения клеточной теории: 1) Клетка является единицей универсальной элементарной единицей живого, 2) клетки всех организмов принципиально сходны по своему строению, функциям и химическому составу; 3) размножение клеток происходит путем деления исходной клетки, 4)клетки хранят, перерабатывают и реализуют генетическую информацию; 5) многоклеточные организмы являются сложными клеточными ансамблями, образующими целостные системы; 6) именно благодаря деятельности клеток в сложных организмах осуществляются рост, развитие, обмен в-в и энергии. Клетка-элементарная живая система, которая состоит из ядра и цитоплазмы; ограничена активной мембраной, способна к обмену с окружающей средой и воспроизведению.

1-3). Основные положения клеточной теории. Вклад Пуркине, Шванна, Вихрова и др. в учение о клетке. Определение клетки. Биологические мембраны клетки, их строение, химический состав и функции. Клеточная теория. В настоящее время клеточная теория гласит: 1) клетка является наименьшей единицей живо­го, 2) клетки разных организмов принципиально сходны по своему строе­нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле­ток и их производных, объединенные в целостные интегрированные систе­мы тканей и органов, подчиненные и связанные между собой межклеточ­ными, гуморальными и нервными формами регуляции. Клетка-элементарная живая система, которая состоит из ядра и цитоплазмы; ограничена активной мембраной, способна к обмену с окружающей средой и воспроизведению. Клетки открыты Робертом Гуком в 1665г. Клеточная теория — это обобщенное представление о строении клеток как единиц живого, об их воспроизведении и роли е формировании многоклеточных организмов. ). Основные положения клеточной теории: 1) Клетка является единицей универсальной элементарной единицей живого, 2) клетки всех организмов принципиально сходны по своему строению, функциям и химическому составу; 3) размножение клеток происходит путем деления исходной клетки, 4)клетки хранят, перерабатывают и реализуют генетическую информацию; 5) многоклеточные организмы являются сложными клеточными ансамблями, образующими целостные системы; 6) именно благодаря деятельности клеток в сложных организмах осуществляются рост, развитие, обмен в-в и энергии.Маттиас Шлейден  и  Теодор Шваннсформулировали  клеточную теорию, основываясь на множестве исследований о  клетке  (1838).  Рудольф Вирхов  позднее (1858) дополнил её важнейшим положением (всякая клетка происходит от другой клетки). Положения клеточной теории Шлейдена-Шванна 1.Все животные и растения состоят из клеток. 2.Растут и развиваются растения и животные путём возникновения новых клеток. 3.Клетка является самой маленькой единицей живого, а целый организм  — это совокупность клеток . Пуркинье и Валентин сравнивали отдельные клетки растений с частными микроскопическими тканевыми структурами животных, которые Пуркинье чаще всего называл «зёрнышками»

2)Биологические мембраны клетки их строение химический состав и функции. Строение биологических мембран. Одной из основных особенностей всех эукариотических клеток является изобилие и сложность строения внутренних мембран. Мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндр-плазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Следовательно, без мембран существование клетки невозможно. Плазматическая мембрана, или плазмалемма, — наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую всю клетку. В состав плазматической мембраны эукариотических клеток входят также полисахариды. Их короткие, сильно развлетвленные молекулы ковалентно связаны с белками, образуя гликопротеины, или с липидами (гликолипиды). Содержание полисахаридов в мембранах составляет 2-—10% по массе. Полисахаридный слой толщиной 10—20 нм, покрывающий сверху плазмалемму животных клеток, получил название гликокаликс. Свойства и функции мембран. Все клеточные мембраны представляют собой подвижные текучие структуры, поскольку молекулы липидов и белков не связаны между собой ковалентными связями и способны достаточно быстро перемещаться в плоскости мембраны. Благодаря этому мембраны могут изменять свою конфигурацию, т. е. обладают текучестью. Мембраны — структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях. Мембраны разных типов клеток существенно различаются как по химическому составу, так и по относительному содержанию в них белков, гликопротеинов, липидов, а следовательно, и по характеру имеющихся в них рецепторов. В мембранах содержатся также специфические рецепторы, переносчики электронов, преобразователи энергии, ферментные белкиВажнейшим свойством мембраны является также избирательная проницаемость. Это значит, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Диффузия воды через мембрану называется осмосом. Функции биологических мембран следующие:  1)Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.  2)Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.  3)Выполняют роль рецепторов; 4)Являются катализаторами (обеспечение примембранных химических процессов).  5)Участвуют в преобразовании энергии

3)Плазмалемма строение функции химический состав Плазмолемма - оболочка животной клетки, ограничивающая ее внутреннюю среду и обеспечивающая взаимодействие клетки с внеклеточной средой.

Плазмолемма имеет толщину около 10 нм, и состоит на 40 % из липидов, на 5-10 % из углеводов (в составе гликокаликса), и на 50-55 % из белков.

Функции плазмолеммы:

  • разграничивающая (барьерная);

  • рецепторная или антигенная;

  • транспортная;

  • образование межклеточных контактов.

Основу строения плазмолеммы составляет:

  • двойной слой липидных молекул (билипидная мембрана), в которую местами включены молекулы белков;

  • надмембранный слой - гликокаликс, структурно связанный с белками и липидами билипидной мембраны;

  • в некоторых клетках имеется подмембранный слой.

Находящиеся на внешней поверхности плазмолеммы белки, в также гидрофильные головки липидов обычно связаны цепочками углеводов и образуют сложные полимерные молекулы гликопротеиды и гликолипиды. Именно эти макромолекулы и составляют надмембранный слой - гликокаликс. В неделящейся клетке имеется подмембранный слой, образованный микротрубочками и микрофиламентами.

Значительная часть поверхностных гликопротеидов и гликолипидов выполняют в норме рецепторные функции, воспринимают гормоны и другие биологически активные вещества. Такие клеточные рецепторы передают воспринимаемые сигналы на внутриклеточные ферментные системы, усиливая или угнетая обмен веществ, и тем самым оказывают влияние на функции клеток. Клеточные рецепторы, а возможно и другие мембранные белки, благодаря своей химической и пространственной специфичности, придают специфичность данному типу клеток данного организма и составляют трансплантационные антигены или антигены гистосовместимости.

Помимо барьерной функции, предохраняющей внутреннюю среду клетки, плазмолемма выполняет транспортные функции, обеспечивающие обмен клетки с окружающей средой.

Межклеточные соединения (контакты)

Плазмолемма многоклеточных животных организмов принимает активное участие в образовании специальных структур — межклеточных соединений (junctiones intercellulares), обеспечивающих межклеточные взаимодействия. Различают несколько типов таких структур (рис. 7).

Простое межклеточное соединение, (junctio intercellularis simplex) — сближение плазмолемм соседних клеток на расстояние 15—20 нм. При этом происходит взаимодействие слоев гликокаликса соседних клеток. Разновидностью простого соединения является "пальцевидное", или соединение по типу замка.

Плотное соединение (запирающая зона) (zonula occludens) — зона, где слои двух плазмолемм максимально сближены, здесь происходит как бы слияние участков плазмолемм двух соседних клеток. Роль плотного замыкающего соединения заключается в механическом соединении клеток друг с другом. Эта область непроницаема для макромолекул и ионов и, следовательно, она запирает, отграничивает межклеточные щели (и вместе с ними собственно внутреннюю среду организма) от внешней среды.

Щелевидное соединение, или нексус (nexus), представляет собой область протяженностью 0,5—3 мкм, где плазмолеммы разделены промежутком в 2—3 нм. Со стороны цитоплазмы никаких специальных примембранных структур в данной области не обнаруживается, но в структуре плазмолемм соседних клеток друг против друга располагаются специальные белковые комплексы (коннексоны), которые образуют как бы каналы из одной клетки в другую. Этот тип соединения встречается во всех группах тканей. Функциональная роль щелевидного соединения заключается в переносе ионов и мелких молекул от клетки к клетке. Так, в сердечной мышце возбуждение, в основе которого лежит процесс изменения ионной проницаемости, передается от клетки к клетке через нексус.

Синаптические соединения, или синапсы (synapsis). Этот тип соединений характерен для нервной ткани и встречается в специализированных участках контакта как между двумя нейронами, так и между нейроном и каким-либо иным элементом, входящим в состав рецептора или эффектора (например, нервно-мышечные, нервно-эпителиальные синапсы). Синапсы — участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому.

Строение синапса также рассматривается в теме нервные окончания.

4. Органеллы цитоплазмы. Структурно-функциональная характеристика органелл, участвующих в биосинтезе веществ в клетках

К ним относятся рибосомы, ЭПС (эндоплазматическая связь) гладкого типа, ЭПС шероховатого типа, комплекс Гольджи (он будет рассмотрен отдельно).Рибосомы – это гранулы диаметром 15-35 нм, состоящие из большой и малой субъединиц. Каждая субъединица содержит молекулу рибосомальной РНК и белок. Полирибосомы – группа рибосом, где малые субъединицы связаны молекулой информационной РНК. Рибосомы и полисомы, свободно расположенные в цитоплазме, продуцируют белки, которые используются для нужд самой клетки. Аминокислоты к рибосоме переносятся транспортной РНК. Рибосома создает условия для взаимодействия между транспортной и информационной РНК и обеспечивает создание полипептидных связей между аминокислотами. ЭПС шероховатого типа – это мембранные мешки, трубочки, вакуоли, которые в совокупности создают сеть в цитоплазме и представляют собой систему синтеза и внутриклеточного транспорта. Мембраны со стороны гиалоплазмы покрыты рибосомами. Данная органелла развита в клетках, активно синтезирующих белок (плазмоциты, клетки поджелудочной железы и др.).

По программе информационной (матричной) РНК, с которой связаны рибосомы из приносимых транспортной РНК аминокислот, создается полипептидная цепь. Начальный конец полипептидной цепи «сигнал» прикрепляется к мембране, а затем проходит через нее внутрь цистерны. Здесь он отрезается с помощью ферментов, а молекула белка конформируется. В дальнейшем белок транспортируется в комплекс Гольджи, а оттуда в виде окруженных мембраной гранул – к плазмолемме для экспорта. Этим же способом создаются белки лизосом и интегральные белки мембран. ЭПС гладкого типа образуется из ЭПС шероховатого типа, которая теряет рибосомы.

Функции гладкой ЭПС

1) разделение цитоплазмы клетки на отделы – компартменты, в каждом из

которых происходит своя группа биохимических реакций;

2) биосинтез жиров и углеводов;

3) образование пероксисом;

4) биосинтез стероидных гормонов;

5) дезинтоксикация экзо- и эндогенных ядов, гормонов и др.;

6) депонирование ионов кальция (в миоцитах и мышечных волокнах);

7) источник мембран при митозе (телофаза).

5. Структурно-функциональная характеристика органелл, участвующих во внутриклеточном пищеварении, защитных и обезвреживающих реакциях

К ним относятся лизосомы и пероксисомы (в ЭПС агранулярного типа происходит обезвреживание токсинов и лекарственных веществ).Лизосомы. Различают: 1) первичные лизосомы; 2) вторичные лизосомы, аутофагосомы; 3) остаточные тельца. Первичные лизосомы имеют вид пузырьков диаметром 0,2-0,4 мкм, ограниченных мембраной. Содержат гидролитические ферменты. Основной из них – кислая фосфатаза. Ферменты находятся в неактивном состоянии, но при активации способны расщеплять биополимеры до мономеров. Вторичные лизосомы – это активные лизосомы, которые образуются путем слияния содержимого первичных лизосом с фагосомой, пиноцитозными вакуолями, измененными органеллами (в последнем случае вторичная лизосома именуется как аутофаголизосома). При этом происходит активация ферментов и лизис веществ, поступивших в клетку или измененные органеллы. Остаточные тельца возникают в случае неполного расщепления компонентов, подлежащих гидролизу. Содержимое их выводится из клетки путем экзоцитоза. Недостаток лизосомальных ферментов лежит в основе болезней накопления (лизосомных болезней).

Функции лизосом

1. Внутриклеточное пищеварение.

2. Участие в фагоцитозе.

3. Участие в митозе – разрушении ядерной оболочки.

4. Участие во внутриклеточной регенерации.

5. Участие в аутолизе – саморазрушении клетки после ее гибели.

Пероксисомы представляют собой пузырьки диаметром 0,3-0,5 мкм,ограниченные мембраной. Матрикс содержит гранулы, фибриллы, трубочки. В них присутствуют оксидазы аминокислот и каталаза, разрушающая перекиси.В результате окисления аминокислот, углеводов и других соединений в клетках образуется сильный окислитель – перекись водорода, который используется для окисления других, в том числе вредных для организма веществ (детоксицирующая функция). Избыток перекиси водорода, токсичного для клетки,

разрушается ферментом каталазой с выделением кислорода и воды.