Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по оптике..docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
124.49 Кб
Скачать

48 Вращение плоскости поляризации света в маг8нитном поле

Эффект фарадея (продольный магнитооптический эффект фарадея) – магнитооптический эффект, который заключается в том, что при распространении линейно поляризованного света через оптически неактивное вещество, находящееся в магнитом поле, наблюдается вращение плоскости поляризации света

Эффект Зеемана- расщепление линий атомных спектров в магнитном поле. Назван в честь ПитераЗеемана , открывшего эффект в 1896 году. Эффект обусловлен тем, что в присутствии магнитного поля электрон, обладающий магнитным моментом приобретает дополнительную энергию

54Эффект Комптона. Комбинационное рассеяние света

Эффект коптона –некогерентное рассеяние фотонов на свободных электронах, некогерентность означает, что фотоны до и после рассеяния не интерферируют. Эффект сопровождается изменением частоты фотонов, часть энергии которых после рассеяния передается электронам

Комбинационное рассеяние света. – оптического излучения на молекулах вещества (твердово, и жидкого или газообразного), сопровождается заметным изменением частоты излучения. В отличие от рэлеевского рассеяния, в случае комбинационного рассеяния света в спектре рассеянного излучения появляются спектральные линии, которых нет в спектре первичного(возбуждающего) света. Число и расположение появившихся линий определяется молекулярным строением вещества

44 Получение и исследование эллиптически поляризованного света

Эллиптическая поляризация света - одно из проявлений поперечной по отношению к направлению распространения электромагнитных волн анизотропии, вследствие "поперечности" колебаний векторов напряжённости электрического Èи магнитного Ĥ полей волны, при которой отсутствует осевая симметрия волны по отношению к направлению её распространения.

В результате поперечной анизотропии электромагнитной волны в пространстве появляются выделенные направления колебаний векторов È и Ĥв плоскости, перпендикулярной направлению распространения. Из-за взаимной ортогональности векторов Èи Ĥдля полного описания состояния колебаний в электромагнитной волне достаточно задание характера колебаний только одного из векторов этих полей, в качестве которой выбирают обычно вектор напряжённости электрического поля È.

Две электромагнитные волны, линейно поляризованные во взаимно перпендикулярных плоскостях, при сложении в общем случае дают волну, поляризованную эллиптически.

В такой волне конец электрического (магнитного) вектора в каждой точке пространства движется по эллипсу. Если эллипс вырождается в круг, то говорят, что волна поляризована по кругу.

  1. Суперпозиция электромагнитных волн. Стоячие электромагнитные волны.

Суперпозиция это процесс, описывающий наложение процессов. Электромагнитная волна это система порождающих друг друга и распространяющихся в пространстве переменных электрического и магнитного полей.с помощью излучающего вибратора, помещенного в фокусе вогнутого зеркала и плоского зеркала Герц получил стоячую волну.

Суперпозиция падающей и отраженной волн. Стоячая электромагнитная волна состоит из двух стоячих волн – электрической и магнитной.

4. Характеристика излучения естественного света. Солнце освещает Землю днем. Ночью на небе бывает Луна, свет ее слаб, еще слабее лучи от ярких звезд. Естественное освещение – это поток энергии Солнца. Для человека важно работать комфортно, чтобы было видно хорошо, недостаток света естественного или искусственного вызывает напряжение глаз, что для них вредно. В течение дня меняется степень освещенности.  Солнце могут закрыть облака. Характеризуется естественное освещение коэффициентом, определяемым отношением естественного освещения внутри здания или комнаты к меняющемуся наружному свету, измеренному на горизонтальной поверхности. Формула КНО = Ев/Ен выражает это ясно. На рабочем месте человека не должно быть ярких бликов и резких теней, утомляющих зрение. Желательней всего естественное освещение, где это возможно. Проводят измерение уровня его раз в год люксметром. Стекла производственных помещений и запыленные стены ослабляют освещенность, поэтому надо своевременно делать побелку стен и мытье окон.  Эффективность освещения может упасть на четверть ниже нормы, это вызывает, особенно в пасмурную погоду, напряжение зрительного аппарата рабочего, если он занимается, например, слесарными операциями или ремонтом аппаратуры.  Кроме световой энергии Солнце излучает ультрафиолетовые и инфракрасные лучи, благоприятные для здоровья людей. Часть их проходит и сквозь стекла окон. На улице это воздействие сильнее. Ультрафиолет в больших дозах небезопасен, а вот инфракрасные лучи:  1. Подавляют рост раковых клеток.  2. Уничтожают некоторые виды вирусов.  3. Нейтрализуют электромагнитные поля.  4. Лечат дистрофию.  5. Благоприятно воздействуют на печень и кожу.  Вот сколько полезных свойств у этих тепловых лучей!  Есте́ственная ширина́ спектра́льной ли́нии — ширина спектральной линии излучения изолированной квантовомеханической системы.Квантовые системы описываются своими волновыми функциями, модули комплексных амплитуд которых достаточно быстро убывают с увеличением расстояния до системы, однако, с формальной точки зрения, нигде не обращаются в ноль. 5.Шкала электромагнитных волн. Электромагнитные волны могут иметь различные частоты и, соответственно, различные длины ( ). Классификация электро­маг­нит­ных волн по частотам называется шкалой электромагнитных волн. Границы частот являются условными. Волны с частотами менее 105Гц (длинами волн более 3000 м) называются длинными волнами. Далее,радиоволны имеют частоты от 105до 3·1010Гц (длины волн от 3000 м до 1 см). Далее следует микроволновая область: частоты от 3·1010до 6·1011Гц (длины волн от 1 см до 0,5 мм). Источники излучения длинных волн, радиоволн и миллиметровых волн являются электрические токи в антеннах, электроны небольших энергий, движущиеся в электрических и магнитных полях.

  1. Основные фотометрические величины и методы их измерения.

Фотометрия — раздел оптики, занимаю­щийся вопросами измерения интенсивно­сти света и его источников. В фотометрии используются следующие величины:

1) энергетические — характеризуют энергетические параметры оптического из­лучения безотносительно к его действию на приемники излучения;

2) световые — характеризуют физио­логические действия света и оцениваются по воздействию на глаз (исходят из так называемой средней чувствительности глаза) или другие приемники излучения.

1. Энергетические величины. Поток из­лучения Фе — величина, равная отноше­нию энергии W излучения ко времени t, за которое излучение произошло:

Фe=W/t.

Единица потока излучения — ватт (Вт).

Энергетическая светимость (излучательность) Re  величина, равная отно­шению потока излучения Фе, испускаемого поверхностью, к площади S сечения, сквозь которое этот поток проходит:

Ree/S,

т. е. представляет собой поверхностную плотность потока излучения.

Единица энергетической светимости — ватт на метр в квадрате (Вт/м2).

Энергетическая сила света (сила излу­чения) Iе определяется с помощью поня­тия о точечном источнике света — источ­нике, размерами которого по сравнению с расстоянием до места наблюдения мож­но пренебречь. Энергетическая сила света 1е — величина, равная отношению потока излучения Фе , в пределах которого это излучение рас­пространяется:источника к телесному углу

1ее/ca.

Единица энергетической силы света — ватт на стерадиан (Вт/ср).

Энергетическая яркость (лучистость)

Ве  величина, равная отношению энерге­тической силы света Ie S проек­ции этого элемента на плоскость, пер­пендикулярную направлению наблюде­ния:элемента излуча­ющей поверхности к площади

ВеI=еS./

Единица энергетической яркости — ватт на стерадиан-метр в квадрате (Вт/(ср•м2)).

Энергетическая освещенность (облу­ченность) Ее характеризует величину по­тока излучения, падающего на единицу освещаемой поверхности. Единица энерге­тической освещенности совпадает с едини­цей энергетической светимости (Вт/м2).

2. Световые величины. При оптических

измерениях используются различные при­емники излучения (например, глаз, фото­элементы, фотоумножители), которые не обладают одинаковой чувствительностью к энергии различных длин волн, являясь, таким образом, селективными (избира­тельными). Каждый приемник излучения характеризуется своей кривой чувстви­тельности к свету различных длин волн. Поэтому световые измерения, являясь субъективными, отличаются от объектив­ных, энергетических и для них вводятся световые единицы, используемые только для видимого света. Основной световой единицей в СИ является единица силы света — кандела (кд), определение кото­рой дано выше (см. Введение). Определе­ние световых единиц аналогично энергети­ческим.

Световой поток Ф определяется как мощность оптического излучения по вы­зываемому им световому ощущению (по его действию на селективный приемник света с заданной спектральной чувстви­тельностью) .

Единица светового потока — люмен (лм): 1 лм — световой поток, испускаемый точечным источником силой света в 1 кд внутри телесного угла в 1 ср (при равно­мерности поля излучения внутри телесного угла) (1 лм= 1 кд•ср).

Светимость R определяется соотно­шением

R=Ф/S.

Единица светимости — люмен на метр в квадрате (лм/м2).

Яркость В  есть величина, равная отношению силы светасветящейся поверхности в некотором направлении  I в этом направлении к площади S проекции све­тящейся поверхности на плоскость, перпендикулярную данному направле­нию:

В).=I/(Scos

Единица яркости — кандела на метр в квадрате (кд/м2).

Освещенность E — величина, равная отношению светового потока Ф, падающе­го на поверхность, к площади S этой поверхности.0,2

  1. Линии равной толщины и их локализация.

  2. Линии равного наклона и их локализация.

Полосы равного наклона получаются при освещении пластинки постоянной толщины рассеянным светом а=const. Волны, падающие под углом, интерферируют и образуют соответствующую полосу – максимум интерференции.

Полосы равной толщины получаются при освещении пластинки непостоянной толщины параллельным пучкам света а=const.

  1. Распространение электромагнитной волны в проводящих средах, комплексный показатель преломления, глубина проникновения.

В конце XIX века английский физик Дж.К.Максвелл на основе своих уравнений создал единую электромагнитную тео­рию световых волн, согласно которой, свет – это множество электромагнитных волн. Электромагнитная волна – это распростра­няющееся в пространстве электромагнитное поле, которое ха­рактеризуется векторами напряженностей Е и Н электрического и магнитного полей. Согласно теории Максвелла, вектора Е и Н перпендику­лярны друг другу и направ­лению распро­странения волны, откуда следует, что электромагнит­ные волны по­перечны (рис. 1.3).

Если среда, в кото­рой распространяется волна, однородная и изо­тропная, то векторы Е и Н удовлетворяют волновому уравне­нию:

где - оператор Лапласа, - фазовая ско­рость волны.

Если электромагнитная волна распространяется в на­правлении х, то волновые уравнения упрощаются:

Решения данных дифференциальных уравнений второго порядка можно представить в виде:

Е = Е0sin (ωt-kx+φ); H = H0sin (ωt-kx+φ).

Это уравнения плоской монохроматической электромаг­нитной волны, где Е0 и Н0 – амплитудные значения Е и Н, k = =ω/υ – волновое число, φ – начальная фаза колебания, х – рас­стояние, отсчитываемое вдоль направления распространения электромагнитной волны. Электромагнитная волна называется монохроматической, если в ней происходят колебания только одной частоты. Мгновенные значения Е и Н в любой точке про­странства связаны соотношением

,

где ε0 и μ0 – электрическая и магнитная постоянные, ε и μ – ди­электрическая и магнитная проницаемости среды. Колебания векторов Е и Н происходят синфазно, т.е. они одновременно об­ращаются в ноль и одновременно достигают максимальных зна­чений. Скорость распространения света в среде или фазовая скорость волны рассчитывается по формуле , где с – скорость света в вакууме.

Электромагнитное поле обладает энергией, поэтому рас­пространение световых волн связано с переносом энергии в про­странстве. Энергия, переносимая волнами за единицу времени через единичную площадку, перпендикулярную фазовой скорости волны, называется плотностью потока энергии S электромаг­нитной волны. В векторном виде S = [EH]. Вектор S называется вектором Умова-Пойнтинга. Он совпадает по направлению со скоростью волны. Среднее значение плотности потока энергии S называют интенсивностью излучения I (I=<S>).

Экспериментально доказано, что физиологическое, фото­химическое и другие действия света вызываются колебаниями электрического вектора Е, поэтому он получил название свето­вого вектора.

  1. Световое давление и опыты Лебедева.

Впер­вые ги­по­те­за о су­ще­ство­ва­нии све­то­во­го дав­ле­ния была вы­ска­за­на Иоган­ном Кепле­ром в XVII веке для объ­яс­не­ния яв­ле­ния хво­стов комет при по­ле­те их вб­ли­зи Солн­ца. Макс­велл на ос­но­ве элек­тро­маг­нит­ной тео­рии света пред­ска­зал, что свет дол­жен ока­зы­вать дав­ле­ние на пре­пят­ствие. Под дей­стви­ем элек­три­че­ско­го поля волны элек­тро­ны в телах со­вер­ша­ют ко­ле­ба­ния – об­ра­зу­ет­ся элек­три­че­ский ток. Этот ток на­прав­лен вдоль на­пря­жен­но­сти элек­три­че­ско­го поля. На упо­ря­до­чен­но дви­жу­щи­е­ся элек­тро­ны дей­ству­ет сила Ло­рен­ца со сто­ро­ны маг­нит­но­го поля, на­прав­лен­ная в сто­ро­ну рас­про­стра­не­ния волны – это и есть сила све­то­во­го дав­ле­ния. Для до­ка­за­тель­ства тео­рии Макс­вел­ла необ­хо­ди­мо было из­ме­рить дав­ле­ние света. Впер­вые дав­ле­ние света из0, ме­рил рус­ский физик Петр Ни­ко­ла­е­вич Ле­бе­дев в 1900 году. При­бор Ле­бе­де­ва (Рис. 3) со­сто­ит из лег­ко­го стерж­ня на тон­кой стек­лян­ной нити, по краям ко­то­рой при­креп­ле­ны лег­кие кры­лыш­ки. Весь при­бор по­ме­щал­ся в стек­лян­ный сосуд, от­ку­да был вы­ка­чан воз­дух. Свет па­да­ет на кры­лыш­ки, рас­по­ло­жен­ные по одну сто­ро­ну стер­жень­ка. О зна­че­нии дав­ле­ния можно су­дить по углу за­кру­чи­ва­ния нити. Труд­ность точ­но­го из­ме­ре­ния дав­ле­ния света была свя­за­на с тем, что из со­су­да невоз­мож­но было вы­ка­чать весь воз­дух. При про­ве­де­нии экс­пе­ри­мен­та на­чи­на­лось дви­же­ние мо­ле­кул воз­ду­ха, вы­зван­ное неоди­на­ко­вым на­гре­вом кры­лы­шек и сте­нок со­су­да. Кры­лыш­ки невоз­мож­но по­ве­сить аб­со­лют­но вер­ти­каль­но. На­гре­тые по­то­ки воз­ду­ха под­ни­ма­ют­ся на­верх, дей­ству­ют на кры­лыш­ки, что при­во­дит к воз­ник­но­ве­нию до­пол­ни­тель­ных вра­ща­ю­щих мо­мен­тов. Также на за­кру­чи­ва­ние нити вли­я­ет неод­но­род­ный на­грев сто­рон кры­лы­шек. Сто­ро­на, об­ра­щен­ная к ис­точ­ни­ку света, на­гре­ва­ет­ся боль­ше, чем про­ти­во­по­лож­ная. Мо­ле­ку­лы, от­ра­жа­ю­щи­е­ся от более на­гре­той сто­ро­ны, пе­ре­да­ют кры­лыш­ку боль­ший им­пульс.

Так дав­ле­ние света на твер­дые тела было до­ка­за­но и из­ме­ре­но (Рис. 6–7). Зна­че­ние этого дав­ле­ние сов­па­ло с пред­ска­зан­ным дав­ле­ни­ем Макс­вел­ла.

  1. Когерентность источников света. Время и длина когерентности. Лазер как источник когерентного света

  2. Частичная когерентность. Пространственная и временная когерентность.

  1. Способы осуществления когерентности в оптике. Метод Юнга и Френеля.

Как уже отмечалось, когерентных источников света в природе не существует. Однако когерентные световые волны можно получить, если свет, идущий от одного источника, разде­лить на две (или более) части и затем заставить их встретиться. В силу общности своего происхождения полученные лучи должны быть когерентными и при наложении интерфериро­вать. Такое разделение может быть осуществлено с помощью экранов и щелей (метод Юнга), зеркал (зеркала Френеля) и преломляющих тел (бипризма Френеля). В 1803г. английский физик Т.Юнг с помощью двух ще­лей получил на экране интерференционную картину. Его опыт заключался в следующем: источником света служила ярко ос­вещенная щель S, от которой световая волна падала на две узкие равноудаленные щели S1 и S2, параллельные S (рис. 2.2). Щели S1 и S2 можно считать когерентными источниками света, а все три упомянутые щели можно рассматривать как точечные ис­точники, свет от которых распространяется во всех направле­ниях. Волны, идущие от S1 и S2, накладываясь друг на друга, ин­терферируют. Интерференционная картина наблюдается на эк­ране.

Обозначим расстояние между щелями S1 и S2 равным d, а между щелями и экраном - l, причем l » d (рис. 2.3 а). Точка О – центр экрана, она расположена симметрично относительно ще­лей S1 и S2. Результат интерференции волн в произвольной точке экрана М, находящейся на расстоянии х от его центра О, должен определяться разностью хода Δ = l2- l1. Математический расчет дает для разности хода Δ = хd/l. В тех местах экрана, ко­торые удовлетворяют условию , образуется интерференционный максимум. Отсюда

. В тех местах экрана, где , волны “га­сят” друг друга и образуется интерференционный минимум. От­сюда

. Шириной интерференционной полосы Δх называется рас­стояние между соседними максимумами или минимумами

.

Величина Δх постоянна при заданных d, l и λ и не зависит от порядка интерференции m. Таким образом, при освещении щелей монохроматическим светом на экране наблюдается чере­дование светлых и темных полос одинаковой ширины (рис. 2.3 б). Чтобы полосы были хорошо различимы, Δх должна быть по­рядка 5 мм, тогда при λ = 500 нм отношение l/d равно 10000, т.е. выполняется условие l » d.

При освещении щелей белым светом интерференционные максимумы становятся радужными. Это происходит из-за того, что положение интерференционного максимума зависит от длины волны падающего света, а белый свет содержит в себе все цвета спектра. Максимумы коротких длин волн (фиолетовых) будут располагаться ближе к центру экрана, за ними следуют максимумы синих длин волн и т.д. до самых длинных красных (рис. 2.3 в). В середине экрана при m = 0 максимумы всех волн совпадут из-за отсутствия разности хода и получится белая по­лоса.

В настоящее время высокая степень когерентности свето­вых лучей достигается с помощью лазеров.

29.Графическое вычисление результирующей амплитуды.

амплитуда это разница между самой высокой и самой низкой температурой. A=t(max)-t(min)

(переписать формулу с папкИ «алиби»)

  1. Оптическое детектирование.

Детектирование с латинского означает открытие, обнаружение. Детектирование это  преобразование электрических колебаний, в результате которого получаются колебания более низкой частоты или постоянный ток. Оптическое детектирование электрического заряда: металлические наночастицы, помещенные в раствор, могут служить также сенсорами электрического заряда, возникающего на их поверхности в результате взаимодействия с молекулами растворителя.

59. Генерация вторых гармоник, суммарной и разностной частот.

Для сред с квадратичной нелинейностью характерны трех волновые(трехчастотные, трехфотонные) взаимодействия световых волн. Поляризация среды на удвоенной частоте или на суммарной (разностной) частоте при определенных условиях могут приводить к переизлучению световой волны на соответствующих частотах. Для возбуждения поля на суммарной частоте, необходимо выполнить условие волнового синхронизма вида к3=к1+к2.процесс генерации второй гармоники относится к случаю вырожденного трехчастотного взаимодействия. С нелинейной поляризацией связаны процессы генерации разностной частоты и параметрического усиления волны.

  1. Электромагнитная природа света. Структура плоских электромагнитных волн.

  2. Природа света и законы его распространения интересо­вали древнегреческих ученых – Платона, Эвклида, Аристотеля еще в 400-300 гг. до нашей эры. Тогда были сформулированы законы прямолинейного распространения и отражения света, были сделаны первые попытки объяснить преломление света. К 140 г. нашей эры Птолемеем был собран большой эксперимен­тальный материал и составлены таблицы углов падения и пре­ломления световых лучей, однако найти математическую связь между ними ему не удалось. Закон преломления был открыт почти через полторы тысячи лет, в 1621 г. голландским ученым В.Снеллиусом.

  3. К началу XVII в. были изобретены микроскоп, зритель­ная труба, оптические приборы в астрономии и навигации. Од­нако создание новых оптических приборов и их совершенство­вание требовало развития теоретических знаний и законов о природе света. В результате обобщения многовековых исследований к концу XVII в. в оптике сформировались две противоположные по взглядам теории света: корпускулярная «теория истечения» (И.Ньютон) и волновая (Ф.Гук и Х.Гюйгенс).

  4. По теории Ньютона свет – это поток мельчайших световых частиц, корпускул, испускаемых светящимся телом и летящих прямолинейно с огромными скоростями. Движение корпускул описывалось законами классической механики.

  5. Гюйгенс в своем «Трактате о свете» выдвинул совершенно иное утверждение, что свет – это упругие волны, распространяющиеся в особой среде – эфире. Борьба сторонников этих двух теорий длилась более ста лет.

  6. В середине XIX в. английский физик Д.К.Максвелл обосновывает электромагнитную природу световых волн, которые в общей шкале электромагнитных волн занимают интервал длин от ~ 380 до 770 нм, что в конце XIX в. экспериментально подтверждается опытами Герца. Однако ряд явлений, открытых к тому времени – фотоэффект, тепловое излучение и др. волновая теория света объяснить не смогла. В начале ХХ в. в работах М.Планка и А.Эйнштейна были заложены основы квантовой физики, утверждающей о дискретности электромагнитного излучения и объясняющие накопившиеся противоречия.

  7. Современные научные представления о природе света объединяют обе точки зрения и дают единую картину его волновых и корпускулярных свойств.