1 Метеорология. Задачи и разделы метеорологии , положение в системе наук о Земле/
Метеороло́гия (от греч. μετέωρος, metéōros — атмосферные и небесные явления и -λογία — наука) — научно-прикладная область знания о строении и свойствах земной атмосферы и совершающихся в ней физико-химических процессах.
Основная задача метеорологии– изучение атмосферных явлений за счет накопления данных об изменениях в пространстве и во времени. Конечной целью метеорологии есть отыскание возможностей и конкретных путей управления атмосферными явлениями и изменения их в желательном для нас направлении.
Промежуточные задачи, которые решает метеорология, сводятся к следующему:
получение точных данных, которые характеризуют атмосферные процессы и явления;
объяснение атмосферных процессов и явлений, то есть установление законов, управляющих их развитием;
использование найденных закономерностей для разработки методов прогнозирования атмосферных процессов;
применение найденных закономерностей развития атмосферных процессов для активной борьбы против опасных и вредных метеорологических явлений, для более полного использования сил природы в практической деятельности человека.
Разделы
Физическая метеорология (разработка радиолокационных и космических методов исследования атмосферных явлений)
Динамическая метеорология (изучение физических механизмов атмосферных процессов)
Синоптическая метеорология (наука о закономерностях изменения погоды).
Климатология
Аэрология (наука, изучающая верхние слои атмосферы до нескольких десятков километров от поверхности Земли)
Кроме того, есть такие прикладные разделы, как:
Авиационная метеорология
Агрометеорология
Биометеорология (наука, изучающая влияние атмосферных процессов на человека и другие живые организмы)
Ядерная метеорология (наука, изучающая естественную и искусственную радиоактивность, распространение в атмосфере радиоактивных примесей, влияние ядерных взрывов)
Радиометеорология (наука, изучающая распространение радиоволн в атмосфере)
Спутниковая метеорология
Предмет исследования
физические, химические процессы в атмосфере
состав атмосферы
строение атмосферы
тепловой режим атмосферы
влагообмен в атмосфере
общая циркуляция атмосферы
электрические поля
оптические и акустические явления.
циклоны
антициклоны
ветра
фронты
климат
погода
облака
метеоры
2 Определения атмосфера погода климат климатология/
Климатология - это наука о климате, то есть о совокупности атмосферных условий, присущих определенной местности в зависимости от ее географической обстановки.
Пого́да — совокупность значений метеорологических элементов и атмосферных явлений, наблюдаемых в определенный момент времени в той или иной точке пространства
Кли́мат (др.-греч. κλίμα (род. п. κλίματος[1]) — наклон; (имеется ввиду наклон солнечных лучей к горизонтальной поверхности) — многолетний (порядка нескольких десятилетий) режим погоды. Погода, в отличие от климата — это мгновенное состояние некоторых характеристик (температура, влажность, атмосферное давление). Климат в узком смысле — локальный климат — характеризует данную местность в силу её географического местоположения. Климат в широком смысле — глобальный климат — характеризует статистический ансамбль состояний, через который проходит система «атмосфера — гидросфера — суша — криосфера — биосфера» за несколько десятилетий[2]. Отклонение погоды от климатической нормы не может рассматриваться как изменение климата, например, очень холодная зима не говорит о похолодании климата[1].
Атмосфера – это газовая оболочка Земли, обеспечивающая защиту от жестких воздействий космоса и необходимая для существования жизни на нашей планете.
3 Организация метеорологических наблюдений/
Метеорологические наблюдения – это инструментальные измерения и визуальные (зрительные) оценки метеорологических величин и явлений. Достигается это путем организации большого числа пунктов (станций и постов) наблюдения по единой программе и с помощью однотипных приборов.
На всех метеорологических станциях наблюдения производятся в единые синхронные сроки наблюдений: 0, 3, 6, 9, 12, 15, 18 и 21 ч московского (зимнего) времени.
Метеорологические данные, получаемые в результате наблюдений, служат основой для составления прогнозов погоды, оценки условий на водных объектах, уровней загрязнения природной среды, предупреждений об опасных и стихийных гидрометеорологических явлениях и для многих других целей.
4 Метеорологическая служба. Всемирная метеорологическая организация/
Метеорологическая служба
служба обеспечения фактической и прогностической информацией о метеорологических условиях тех или иных районов. Входит в состав гидрометеорологической службы.
Всемирная метеорологическая организация (ВМО, англ. World Meteorological Organization, WMO, фр. Organisation météorologique mondiale, OMM) — специализированное межправительственное учреждение Организации Объединённых Наций в области метеорологии. Основано в 1950 году. Является компетентным органом ООН по вопросам наблюдения за состоянием атмосферы Земли и её взаимодействия с океанами. Штаб-квартира ВМО находится в Женеве, Швейцария.
5 Состав и строения атмосферы/
Нижняя граница атмосферы совпадает с поверхностью Земли, так как воздух проникает в мельчайшие поры в почве и растворен даже в воде.
Верхняя граница на высоте 2000-3000 км постепенно переходит в космическое пространство.
Благодаря атмосфере, в которой содержится кислород, возможна жизнь на Земле. Атмосферный кислород используется в процессе дыхания человека, животными, растениями.
Если бы не было атмосферы, на Земле была бы такая же тишина, как на Луне. Ведь звук — это колебание частиц воздуха. Голубой цвет неба объясняется тем, что солнечные лучи, проходя сквозь атмосферу, как через линзу, разлагаются на составляющие цвета. При этом рассеиваются больше всего лучи голубого и синего цветов.
Атмосфера задерживает большую часть ультрафиолетового излучения Солнца, которое губительно действует на живые организмы. Также она удерживает у поверхности Земли тепло, не давая нашей планете охлаждаться.
Атмосфера Земли состоит в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения).
Концентрация газов, составляющих атмосферу, практически постоянна, за исключением воды (H2O) и углекислого газа (CO2).
Кроме указанных в таблице газов, в атмосфере содержатся SО2, СН4, NН3, СО, углеводороды, НСl, НF, пары Нg, I2, а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц (аэрозоль)
Строение атмосферы и характеристика отдельных оболочек
В атмосфере различают следующие основные слои: тропосферу, стратосферу, мезосферу, термосферу, экзосферу (сферу рассеяния). Переходные области атмосферы между соседними оболочками называют соответственно тропопауза, стратопауза и т. п.
Тропосфера — нижний, наиболее изученный слой атмосферы, высотой в полярных областях 8—10 км, в умеренных широтах до 10—12 км, на экваторе — 16—18 км. В тропосфере сосредоточено примерно 80—90% всей массы атмосферы и почти все водяные пары... Происходят все погодные явления.
Стратосфера — слой атмосферы, располагающийся на высоте от 11 до 50 км, на долю стратосферы — около 20% атмосферы. Именно в стратосфере располагается слой озоносферы («озоновый слой») (на высоте от 15—20 до 55—60 км), который определяет верхний предел жизни в биосфере. поглощая губительные для жизни УФ-излучения Солнца. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний, зарниц, и др. свечений. В стратосфере почти нет водяного пара.
Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура воздуха до высоты 75—85 км понижается до −88°С. Верхней границей мезосферы является мезопауза. масса мезосферы — не более 0,3%
Термосфера (другое название — ионосфера) — слой атмосферы, следующий за мезосферой, — начинается на высоте 80—90 км и простирается до 800 км. Температура воздуха в ионосфере быстро и неуклонно возрастает и достигает нескольких сотен и даже тысяч градусов. Защищает Землю от вредных космических лучей, термосферы — менее 0,05% от общей массы атмосферы
Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 800 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство.
6 Прогноз погоды. Служба погоды/
Прогноз погоды — научно обоснованное предположение о будущем состоянии погоды в определённом пункте или регионе на определённый период. Составляется (разрабатывается) метеорологическими службами на основе методов метеорологии.
Во всех странах существуют специальные государственные организации, так называемые метеорологические службы, в состав которых входят сети станций и научные метеорологические учреждения. Задачей метеорологической службы является научное исследование атмосферы и практическое обслуживание народного хозяйства информацией о погоде и климате и прогнозами погоды.
7 Солнечная радиация в атмосфере. Спектр электромагнитного излучения. Понятия коротковолновой и длинноволновой радиации/
Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией
Рассмотрим понятие спектра электромагнитных волн. Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.
Спектр электромагнитного излучения в порядке увеличения частоты составляют:
1) Радиоволны;
2) Инфракрасное излучение;
3) Световое излучение;
4) Рентгеновское излучение;
5) Гамма излучение.
Коротковолновая радиация |
Обозначение для прямой и рассеянной солнечной радиации, в основном заключающейся в интервале длин волн от 0,17 до 4 мкм, в отличие от длинноволновой радиации земной поверхности и атмосферы. |
длинноволновая радиация
Инфракрасное излучение земной поверхности, атмосферы и облаков в интервале длин волн больше 4 микрон.
8 Прямая, рассеянная, отраженная, поглощенная солнечная радиация. Альбедо/
Радиацию, приходящую к Земле непосредственно от солнечного диска, называют прямой солнечной радиацией
Суммарная солнечная радиация, приходящая на земную поверхность, частично от нее отражается и теряется ею — это отраженная радиация
Альбедо поверхности — это отношение отраженной радиации к суммарной радиации, выраженное в долях от единицы или в процентах
9 Излучение земной поверхности, встречное излучение, эффективное излучение/
Верхние слои почвы и воды, снежный покров и растительность сами излучают длинноволновую радиацию; эту земную радиацию чаще называют собственным излучением земной поверхности.
Собственное излучение можно рассчитать, зная абсолютную температуру земной поверхности.
Большая часть (70%) атмосферной радиации приходит к земной поверхности, остальная часть уходит в мировое пространство. Атмосферную радиацию, приходящую к земной поверхности, называют встречным излучением Еа, так как оно направлено навстречу собственному излучению земной поверхности. Земная поверхность поглощает встречное излучение почти целиком (на 95-99%).
Большая часть (70%) атмосферной радиации приходит к земной поверхности, остальная часть уходит в мировое пространство. Атмосферную радиацию, приходящую к земной поверхности, называют встречным излучением Еа, так как оно направлено навстречу собственному излучению земной поверхности. Земная поверхность поглощает встречное излучение почти целиком (на 95-99%). 10 Радиационный баланс земной поверхности. Расчет радиационного баланса/
Радиационный баланс земной поверхности - разность между поглощенной радиацией и эффективным излучением называют радиационным балансом земной поверхности. В ночные часы, когда суммарная радиация отсутствует, отрицательный радиационный баланс равен эффективному излучению.
11 Методы измерения солнечной радиации/
Методы измерения солнечной радиации и составляющих радиационного баланса
Для измерения потоков солнечной радиации применяются абсолютные и относительные методы и соответственно разработаны абсолютные и относительные актинометрические приборы. Абсолютные приборы обычно применяют только для тарировки и поверки относительных приборов.
Относительные приборы применяются при регулярных наблюдениях на сети метеостанций, а также в экспедициях, и при полевых наблюдениях. Из них наиболее широко используются термоэлектрические приборы: актинометр, пиранометр и альбедометр. Приемником солнечной радиации у этих приборов служат термобатареи, составленные из двух металлов (обычно манганина и константана). В зависимости от интенсивности радиации между Спаями термобатареи создается разность температур и возникает электрический ток различной силы, который измеряется гальванометром. Для перевода делений шкалы гальванометра в абсолютные единицы применяются переводные множители, которые определяются для данной пары: актинометрический прибор — гальванометр.
Актинометр термоэлектрический (М-3) Савинова — Янишевского служит для измерения прямой радиации, приходящий на поверхность, перпендикулярную к солнечным лучам.
Пиранометр (М-80М) Янишевского служит для измерения суммарной и рассеянной радиации, приходящей на горизонтальную поверхность.
При наблюдениях приемная часть пиранометра устанавливается горизонтально. Для определения рассеянной радиации пиранометр затеняется от прямой радиации теневым экраном в виде круглого диска, закрепленного на стержне на расстоянии 60 см от приемной поверхности. При измерении суммарной радиации теневой экран отводится в сторону
Альбедометр — это пиранометр, приспособленный также. Для измерения отраженной радиации. Для этого служит устройство, позволяющее поворачивать приемную часть прибора вверх (для измерения прямой) и вниз (для измерения отраженной радиаций). Определив альбедометром суммарную и отраженную радиацию, вычисляют альбедо подстилающей поверхности. Для полевых измерений используют альбедометр походный М-69.
Балансомер термоэлектрический М-10М. Этот прибор применяется для измерения радиационного баланса подстилающей поверхности.
Кроме рассмотренных приборов, используют также люксметры — фотометрические приборы для измерения освещенности, спектрофотометры, различные приборы для измерения ФАР и т. д. Многие актинометрические приборы приспособлены для непрерывной записи составляющих радиационного баланса.
Важной характеристикой режима солнечной радиации является продолжительность солнечного сияния. Для ее определения служит гелиограф.
12 Причины изменения температуры воздуха. Индивидуальные и локальные изменения температуры воздуха/
Распределение температуры воздуха в атмосфере и его непрерывные изменения называют тепловым режимом атмосферы. Этот тепловой режим атмосферы, являющийся важнейшей стороной климата, определяется, прежде всего, теплообменом между атмосферным воздухом и окружающей средой. Под окружающей средой при этом понимают космическое пространство и особенно земную поверхность.
Мы уже знаем, что теплообмен осуществляется, во-первых, радиационным путем, т. е. при собственном излечении из воздуха и при поглощении воздухом радиации.
Во-вторых, он осуществляется путем теплопроводности - молекулярной между воздухом и земной поверхностью и турбулентной внутри атмосферы.
В-третьих, передача тепла между земной поверхностью и воздухом может происходить в результате испарения и последующей конденсации или кристаллизации водяного пара.
Кроме того, изменения температуры воздуха могут происходить независимо от теплообмена, адиабатически.
Непосредственное поглощение солнечной радиации в тропосфере мало; оно может вызвать повышение температуры воздуха всего на величину порядка 0,5° в день. Решающее значение для теплового режима атмосферы имеет теплообмен с земной поверхностью путем теплопроводности.
Воздух, непосредственно соприкасающийся с земной поверхностью, обменивается с нею теплом вследствие молекулярной теплопроводности. Но внутри атмосферы действует другая, более эффективная передача тепла - путем турбулентной теплопроводности. Перемешивание воздуха в процессе турбулентности способствует очень быстрой передаче тепла из одних слоев атмосферы в другие. В результате потеря тепла земной поверхностью окажется больше, чем она была бы в отсутствии турбулентности.
Для высоких слоев атмосферы теплообмен с земной поверхностью имеет меньшее значение. Решающая роль в тепловом режиме переходит там к излучению из воздуха и к поглощению радиации Солнца. В высоких слоях атмосферы возрастает и значение адиабатических изменений температуры при восходящих и нисходящих движениях воздуха.
Изменения температуры, происходящие в определенном количестве воздуха вследствие указанных выше процессов, можно назвать индивидуальными. Они характеризуют изменения теплового состояния данного определенного количества воздуха.
Но можно говорить не об индивидуальном количестве воздуха, а о некоторой точке внутри атмосферы с зафиксированными географическими координатами и с неизменной высотой над уровнем моря. Любую метеорологическую станцию, не меняющую своего положения на земной поверхности, можно рассматривать как такую точку. Температура в этой точке будет меняться не только в силу указанных индивидуальных изменений теплового состояния воздуха. Она будет меняться также и вследствие непрерывной смены воздуха в данном месте, т. е. вследствие прихода воздуха из других мест атмосферы, где он имеет другую температуру.
Эти изменения температуры, связанные с адвекцией - с притоком в данное место новых воздушных масс из других частей Земного шара, называют адвективными. Если в данное место притекает воздух с более высокой температурой, говорят об адвекции тепла; если с более низкой, - об адвекции холода.
Общее изменение температуры в зафиксированной географической точке, зависящее и от индивидуальных изменений состояния воздуха, и от адвекции, называют локальным (местным) изменением. Метеорологические приборы - термометры и термографы, неподвижно помещенные в том или ином месте, регистрируют именно локальные изменения температуры воздуха. Термометр на воздушном шаре, летящем по ветру и, следовательно, остающемся в одной и той же массе воздуха, показывает индивидуальное изменение температуры в этой массе.
13 Температура воздуха . Единицы измерения и причины изменения температуры воздуха
Температура воздуха — один из термодинамических параметров состояния атмосферы. Измеряется термометром[1].
Существует несколько различных единиц измерения температуры. Они делятся на относительные (градус Цельсия, градус Фаренгейта…) и абсолютные (Кельвин, градус Ранкина…).
Воздух, как стекло, пропускает солнечные лучи к поверхности Земли и при этом не нагревается. Потрогай оконное стекло в солнечный день. Ты убедишься, что оно холодное, а подоконник тёплый. Воздух в тропосфере нагревается от земной поверхности, нагретой Солнцем. Поэтому чем дальше (выше) от Земли, тем оно холоднее.
Температуру воздуха на метеорологических станциях определяют с помощью термометра каждые три часа. Термометр должен быть в тени, куда на протяжении дня не проникают солнечные лучи. Иначе будем иметь не температуру воздуха, а температуру нагретой Солнцем стеклянной трубки.
От чего зависит температура воздуха? Почему она выше всего в полдень и ниже всего — утром, до восхода Солнца? Почему вблизи экватора температуры на протяжении года всегда высокие, а около полюсов — низкие? Почему летом в наших широтах всегда теплее, чем зимой?
Солнечные лучи нагревают Землю неравномерно. Чем выше Солнце над горизонтом, тем выше температура. Следовательно, температура воздуха зависит от угла падения солнечных лучей. А угол падения — от широты местности и от времени суток. Между экватором и тропиками угол падения лучей самый большой (до 90°), возле полюсов — самый маленький.
14 Методы и средства измерения температуры воздуха температуры воздуха и почвы
Для измерения температуры поверхности почвы на метеорологических станциях применяют срочный, максимальный и минимальный термометры. Эти термометры кладут вместе на открытой площадке размером 4х6 м так, чтобы их резервуары плотно прилегали к почве и наполовину были в неё погружены, но не покрывались землей. Травяной покров с площадке удаляется, а почва взрыхляется. Поверхность участка должна быть на одном уровне с метеорологической площадкой. При наличии снежного покрова все три термометра помещают на поверхности снега, наполовину погрузив их в снег. Термометры укладываются на поверхности в центре площадки резервуарами на восток на расстоянии 5–6 см друг от друга: первый с севера срочный, затем минимальный и за ним максимальный. Срочный и минимальный термометры – строго горизонтально, максимальный термометр – с небольшим наклоном в сторону резервуара.
Срочный напочвенный термометр ТМ–3 (рис. 14) применяется для измерения температур поверхности почвы в данный момент. Термометр ртутный с цилиндрическим резервуаром и ценой деления 0.50С.
Максимальный и минимальный термометры используются те же, что и при измерении температур воздуха.
Температура воздуха является одной из основных величин, характеризующих тепловое состояние атмосферы.
При измерении температуры воздуха применяется множество термометров, однако наибольшее распространение и применение получили следующие:
1) жидкостные термометры, действие которые основано на изменении объема жидкости при изменении температуры;
2) деформированные термометры, действие которых основано на изменении линейных размеров твердых тел с изменением температуры;
3) термометры сопротивления, действие которых основано на изменении электропроводности тел с изменением температуры;
4) термоэлектрические термометры, действие которых основано на изменении электродвижущей силы термоэлементов при изменении разности температуры спаев.
На метеорологических станциях температуру воздуха измеряют по сухому термометру станционного психрометра, который предназначен также для определения характеристик влажности, а также температуру воздуха определяют по максимальному и минимальному термометрам. Устанавливают термометры в психрометрической будке на штативе (рис.10).
15 Адиабатические изменения температуры. Сухоадиабатический градиент
адиабатический градиент температуры — Скорость изменения температуры в массе воздуха при ее адиабатическом перемещении по вертикали как реакция на расширение или сжатие этой воздушной массы
сухоадиабатический градиент — Вертикальный адиабатический градиент температуры сухого или влажного ненасыщенного воздуха, равен примерно 1°С на 100 м высоты …
16 Влажноадиабатические изменения температуры в атмосфере при вертикальном движении воздуха
При дальнейшем подъеме влажный насыщенный воздух охлаждается иначе, чем ненасыщенный. В нем происходит конденсация, а при конденсации выделяется в значительных количествах скрытая теплота парообразования, или теплота конденсации (около 600 кал на каждый грамм сконденсировавшейся воды). Выделение этой теплоты замедляет понижение температуры воздуха при подъеме. Поэтому в поднимающемся насыщенном воздухе температура падает уже не по уравнению Пуассона, а по влажноадиабатическому закону. Она падает тем медленнее, чем больше влагосодержание воздуха в состоянии насыщения (что в свою очередь зависит от температуры и давления). На каждые 100 м подъема насыщенный воздух при давлении 1000 мб и температуре 0° охлаждается на 0,66 , при температуре +20° — на 0,44° и при температуре —20° — на 0,88°. При более низком давлении падение температуры соответственно меньше. Падение температуры в насыщенном воздухе при подъеме его на единицу высоты (100 м) называют влажноадиабатическим градиентом Гs.
При очень низких температурах, которые получает воздух при подъеме в высокие слои атмосферы, водяного пара в нем остается немного и выделение теплоты конденсации поэтому также мало. Падение температуры при подъеме в таком воздухе приближается к падению в сухом воздухе. Иначе говоря, влажноадиабатический градиент при низких, температурах приближается по величине к сухоадиабатическому.
17 Вертикальное распределение температуры воздуха. Кривая стратификации. Инверсия и изотермия. Расчет вертикального градиента температуры
ВЕРТИКАЛЬНЫЙ ГРАДИЕНТ ТЕМПЕРАТУРЫ — скорость убывания температуры с ростом высоты. В некоторых средах (в стратосфере) температура при подъеме повышается, и тогда образуется обратный, или инверсионный, вертикальный градиент, которому присваивается знак минус.
Кривая стратификации |
Кривая распределения температуры воздуха в зависимости от давления или высоты в определенном частном случае по данным аэрологического подъема; обычно имеется в виду такая кривая, нанесенная на бланке адиабатной (аэрологической) диаграммы. Инверсия в метеорологии означает аномальный характер изменения какого-либо параметра в атмосфере с увеличением высоты. Наиболее часто это относится к температурной инверсии, то есть к увеличению температуры с высотой в некотором слое атмосферы вместо обычного понижения (см. атмосфера Земли). изотермия — Слой воздуха, в котором температура с высотой не меняется. |
18 Тепловой баланс земной поверхности
Теплово́й бала́нс Земли́ — баланс энергии процессов теплопередачи и излучения в атмосфере и на поверхности Земли.
19 Суточный и годовой ход температуры на поверхности почвы и в приземном слое атмосфере
|
Суточная амплитуда температуры воздуха (разница между максимальной и минимальной температурами воздуха в течение суток) выше на суше, чем над океаном; уменьшается при движении в высокие широты, (наибольшая в тропических пустынях – до 400 С) и, возрастает в местах с оголенной почвой. Величина суточной амплитуды температуры воздуха – это один из показателей континентальности климата. В пустынях она намного больше, чем в районах с морским климатом.
Годовой ход температуры воздуха (изменение среднемесячной температуры в течение года) определяется, прежде всего, широтой места. Годовая амплитуда температуры воздуха- разница между максимальной и минимальной среднемесячными температурами.
20 Различия в тепловом режиме почвы и водоемов
уществуют резкие различия в нагревании и тепловых особенностях поверхностных слоев почвы и верхних слоев водных бассейнов. В почве тепло распространяется по вертикали путем молекулярной теплопроводности, а в легкорухомий воде - также и вследствие турбулентного перемешивания водных слоев, поэтому гораздо более эффективно. Турбулентность в водоемах обусловлена течениями и волнениями. Но в ночное время суток и в холодный период года к турбулентности добавляется еще и термическая конвекция: охлажденная на поверхности вода опускается вниз вследствие увеличенной плотности и замещается более теплой водой из нижних слоев. В океанах и морях некоторую роль в перемешивании слоев и связанной с этим передачи тепла играет также и испарения. При значительном испарении с поверхности моря верхний слой воды становится более соленым и плотным, в результате чего вода опускается с поверхности вглубь. Кроме того, радиация проникает глубже в воду по сравнению с почвой. Наконец, теплоемкость воды в 3-4 раза больше теплоемкости почвы, поэтому одна и та же количество тепла нагреет массу воды до меньшей температуры, чем такую же массу почвы.
В результате, суточные колебания температуры в воде распространяются на глубину 15-20 м, а в почве - на глубины до 1 м. Годовые колебания температуры в воде распространяются на глубину сотен метров, а в почве - на 10-20 м.
21 Влияние растительного и снежного покрова на температуру поверхности почвы
Влияние снежного и растительного покрова Снежный (ледяной) покров уменьшает потерю тепла почвой и колебания ее температуры. Поверхность покрова отражает солнечную радиацию днем и охлаждается излучением ночью, поэтому она понижает температуру приземного слоя воздуха. Весной на таяние снежного покрова тратится большое количество тепла, которое берется из атмосферы: таким образом, температура воздуха над тающим снежным покровом остается близкой к нулю. Над снежным покровом наблюдаются инверсии температуры: зимой - связанные с радиационным выхолаживанием, весной - с таянием снега. Над постоянным снежным покровом полярных областей даже летом отмечаются инверсии или изотермии. Таяние снежного покрова обогащает почву влагой и имеет большое значение для климатического режима теплого времени года. Большое альбедо снежного покрова приводит к усилению рассеянной радиации и увеличению суммарной радиации и освещенности. Густой травяной покров уменьшает суточную амплитуду температуры почвы и снижает ее среднюю температуру. Следовательно, он уменьшает суточную амплитуду температуры воздуха. Более сложное влияние на климат имеет лес, который может увеличивать над собой количество осадков, вследствие шероховатости подстилающей поверхности. Однако влияние растительного покрова имеет в основном микроклиматическое значение, распространяясь преимущественно на приземный слой воздуха и на небольших площадях.
22 Распространение тепла в глубь почвы. Законы фурье
Тепло от поверхности почвы передается вглубь почвы главным образом путем МОЛЕКУЛЯРНОЙ ТЕПЛОПРОВОДНОСТИ. При распространении тепла вглубь происходит некоторое поглощение его каждым слоем почвы. Чем глубже расположен слой, тем меньше он получает тепла и тем меньше повышается его температура в суточном и годовом ходе. При охлаждении почвы вследствие излучения тепло из глубины почвы путем молекулярной теплопроводности передается к ее поверхности. Поэтому чем глубже расположен слой почвы, тем меньше он будет охлаждаться в суточном и годовом ходе. Распространение температурных колебаний вглубь почвы описывается тремя законами Фурье. Вода, в отличие от почвы представляет для коротковолновой радиации довольно прозрачное тело. Поэтому короткие волны (особенно фиолетовые и ультрафиолетовые) проникают в воду на значительную глубину, и радиационное нагревание происходит в слое воды толщиной несколько метров. По причине большой подвижности частиц воды передача тепла вглубь водоемов происходит не путем молекулярной теплопроводности как в почве, а путем более интенсивного процесса – ТУРБУЛЕНТНОГО ПЕРЕМЕШИВАНИЯ. Оно состоит в том, что при движении воды в ней создаются вихри, беспорядочно перемещающиеся во всех направлениях, способствующие сильному перемешиванию воды и интенсивному переносу тепла. Вследствие турбулентного перемешивания перенос тепла вглубь водоемов оказывается в 1000-10000 раз сильнее его переноса в почве, и водоемы соответственно прогреваются глубже. Охлаждение воды ночью происходит еще быстрее, чем ее нагревание днем. При охлаждении к турбулентному перемешиванию присоединяется термическая конвекция. Она состоит в том, что охлажденные верхние слои вследствие увеличивающейся плотности опускаются вниз, а их место занимает относительно теплая вода, поднимающаяся из более глубоких слоев водоема.
