- •Гетеротрофные и аутотрофные организмы: различия по питанию и источникам энергии; катаболизм и анаболизм.
- •3. Распад гемма. Образование билирубина и билирубинглюкуронидов. Пути выведения желчных пигментов. Желтухи.
- •2Билет.
- •Первичная структура белков и ее влияние на конформацию белков. Серповидноклеточная анемия.
- •Обмен глицерина до конечных продуктов (со2 и н2о).
- •Аскорбиновая кислота: строение и биологическая роль.
- •4. Задача. В приемный покой больницы поступил мужчина с жалобами на острые боли в области сердца. Врач заподозрил инфаркт миокарда и назначил исследование ферментов крови: креатинкиназы, аст и лдг.
- •3Билет.
- •Общая характеристика класса гидролаз и их основные подклассы.
- •Непрямое дезаминирование аминокислот: последовательность реакций, характеристика ферментов, биологическое значение процесса.
- •4. Задача. Почему при остром алкогольном отравлении нередко наблюдается гипогликемия?
- •Механизм действия ферментов. Роль конформационных изменений фермента при катализе.
- •Какие ферменты цикла трикарбоновых кислот являются регуляторными? Какие соединения и как на них влияют?
- •Биосинтез рнк (транскрипция). Первичные транскрипты и созревание (процессинг) рибосомных, транспортных и матричных рнк.
- •Задача. Объясните, почему при употреблении в пищу преимущественно кукурузы и малого количества мяса возникает пеллагра? Напишите формулу соединения для лечения.
- •5Билет.
- •Охарактеризуйте четвертый класс ферментов: тип катализируемых реакций и назовите важнейшие группы ферментов внутри класса. Назовите несколько представителей и напишите химизм реакций.
- •Образование мевалоновой кислоты из ацетил-КоА
- •Синтез из мевалоновой кислоты «активного изопрена» с конденсацией последнего в сквален;
- •Превращение сквалена в холестерин.
- •Глюкозо-аланиновый цикл и его биологическая роль.
- •6Билет.
- •2. Биосинтез и использование кетоновых тел.
- •3. Ренин-ангиотензиновая система. Биохимический механизм развития почечной гипертензии.
- •Характеристика нуклеопротеинов: основные белковые компоненты и простетические группы.
- •Связанные с днк
- •Связанные с рнк
- •Обмен фенилаланина и тирозина. Молекулярная патология обмена этих аминокислот. Обмен циклических аминокислот фенилаланина и тирозина
- •4. Задача. О каком заболевании может идти речь, если у больного ребенка содержание глюкозы в крови натощак – 2,0 ммоль/л?
- •Классификация углеводов
- •10Билет
- •2. Какой биохимический механизм образно называют "ловушкой глюкозы" и почему? Пути превращения глюкозо - 6 - фосфата в организме.
- •3. Строение и биосинтез тиреоидных гормонов. Биологическая роль
- •Причины врожденной формы
- •Причины приобретенного гипотиреоза
- •4. Задача
- •11Билет
- •Изоферменты. Клиническое значение определения активности изоферментов на примере лактатдегидрогеназы и креатинкиназы.
- •Покажите путь азота от валина до азота мочевины.
- •Адреналин и норадреналин: биосинтез, распад, влияние на обмен веществ.
- •Задача. У людей с недостаточностью лактазы прием молока вызывает кишечные расстройства, а прием простокваши – нет. Почему? Напишите химизм.
- •12Билет.
- •13Билет
- •2. Аэробное дихотомическое окисление глюкозы.
- •3. Основные компоненты белоксинтетической системы. Что такое трансляция? Основные фазы трансляции.
- •14 Билет
- •2. Синтез глутамина: химизм, хар-ка фермента, биол. Значение.
- •15 Билет
- •2. В чем состоит биологическое значение карнитина? Опишите выполняемую им в клетках функцию.
- •3. Обмен железа: всасывание, транспорт кровью, депонирование. Нарушения обмена железа – железодефицитная анемия.
- •4. Задача. Будут ли у пациента обнаруживаться признаки недостаточности аспартата, если его рацион богат аланином, но беден аспартатом? Аргументируйте ответ.
- •16 Билет
- •2. Трансаминирование аминокислот. Аминотрансферазы, роль пиридоксальфосфата.
- •3. Представления о биосинтезе холестерина.
- •17 Билет
- •2. Пентозофосфатный путь окисления глюкозы. Написать окислительный этап образования пентоз, химизм реакций, ферменты и коферменты.
- •3.Липоевая кислота: строение и роль в обмене веществ.
- •4. Задача. Какую часть суточного расхода энергии в организме (около 12000 кДж) обеспечивает распад углеводов. (Суточное потребление углеводов около 500 г, при распаде 1 г глюкозы выделяется 15 кДж.
- •18 Билет
- •2. Покажите связь между обменом углеводов и жиров.
- •3. Тканевой распад гемоглобина, образование желчных пигментов.
- •4. Задача. Объяснить, почему при отравлениях солями тяжелых металлов (ртути, свинца, меди) применяют в качестве противоядия молоко, яйца?
- •19 Билет
- •2. Аэробное дихотомическое окисление глюкозы.
- •3. Основные компоненты белоксинтетической системы. Что такое трансляция? Основные фазы трансляции.
- •20 Билет
- •23 Билет
- •Лечение
2. Пентозофосфатный путь окисления глюкозы. Написать окислительный этап образования пентоз, химизм реакций, ферменты и коферменты.
Пентозофосфатный путь, называемый также гексомонофосфатным шунтом, служит альтернативным путём окисления глюкозо-6-фосфата. Пентозофосфатный путь состоит из 2 фаз (частей) - окислительной и неокислительной.
В окислительной фазе глюкозо-6-фосфат необратимо окисляется в пентозу - рибулозо-5-фосфат, и образуется восстановленный NADPH.
В неокислительной фазе рибулозо-5-фосфат обратимо превращается в рибозо-5-фосфат и метаболиты гликолиза.
Пентозофосфатный путь обеспечивает клетки рибозой для синтеза пуриновых и пиримидиновых нуклеотидов и гидрированным ко-ферментом NADPH, который используется в восстановительных процессах.
Суммарное уравнение пентозофосфатного пути выражается следующим образом:
3 Глюкозо-6-фосфат + 6 NADP+ → 3 СО2 + 6 (NADPH + Н+) + 2 Фруктозо-6-фосфат + Глицеральдегид- 3 -фосфат.
Ферменты пентозофосфатного пути, так же, как и ферменты гликолиза, локализованы в цитозоле.
Наиболее активно Пентозофосфатный путь протекает в жировой ткани, печени, коре надпочечников, эритроцитах, молочной железе в период лактации, семенниках.
А. Окислительный этап
В окислительной части пентозофосфатного пути глюкозо-6-фосфат подвергается окислительному декарбоксилированию, в результате которого образуются пентозы. Этот этап включает 2 реакции дегидрирования.
Первая реакция дегидрирования - превращение глюкозо-6-фосфата в глюконолактон-6-фосфат - катализируется МАDР+-зависимой глюкозо-6-фосфатдегидрогеназой и сопровождается окислением альдегидной группы у первого атома углерода и образованием одной молекулы восстановленного кофермента NADPH.
Далее глюконолактон-6-фосфат быстро превращается в 6-фосфоглюконат при участии фермента глюконолактонгидратазы.
Фермент 6-фосфоглюконатдегидрогеназа катализирует вторую реакцию дегидрирования окислительной части, в ходе которой происходит также и декарбоксилирование. При этом углеродная цепь укорачивается на один атом углерода, образуется рибулозо-5-фосфат и вторая молекула гидрированного NADPH (рис. 7-62).
Восстановленный NADPH ингибирует первый фермент окислительного этапа пентозофосфатного пути - глюкозо-6-фосфатдегидрогеназу. Превращение NADPH в окисленное состояние NADP+ приводит к ослаблению ингибирования фермента. При этом скорость соответствующей реакции возрастает, и образуется большее количество NADPH.
Суммарное уравнение окислительного этапа пентозофосфатного пути можно представить в виде:
Глюкозо-6-фосфат + 2 NADP+ + Н2О → Рибулозо-5-фосфат + 2 NADPH + Н+ + СО2.
3.Липоевая кислота: строение и роль в обмене веществ.
Согласно современным представлениям - липоевая кислота рассматривается как витаминоподобное вещество (витаминоид), биологическая роль которого определяется его участием в окислительно-восстановительных процессах цикла трикарбоновых кислот (цикл Кребса) в качестве кофермента, оптимизируя реакции окислительного фосфорилирования (в т.ч. ЛК кислота катализирует превращение молочной кислоты в пировиноградную и ее последующее декарбоксилирование, способствуя ликвидации метаболического ацидоза). ЛК обладает положительным липотропным действием, облегчая перенос ацетата и жирных кислот из цитозоля в матрикс митохондрий для последующего окисления за счет повышения выработки коэнзима А (КоА). ЛК сдвигает спектр липидов крови в сторону ненасыщенных жирных кислот, понижает содержание холестерина и насыщенных жирных кислот в крови, предотвращая развитие атеросклероза. Кроме того, ЛК мобилизует жир из жирового депо организма с последующей его утилизацией в энергетическом обмене. ЛК усиливает усвоение аминокислоты глицин. R-изомер ЛК повышает периферический захват глюкозы и тем самым уменьшает инсулинорезистентность. В различных экспериментальных работах показано, что ЛК опосредованно восстанавливает витамины С и Е, повышает уровень внутриклеточного глутатиона и кофермента Q10, ингибирует острую фазу воспаления и уменьшает проявления болевого синдрома. ЛК содержится в нормальных продуктах питания человека и в изобилии найдена в тканях животных с высоким обменом веществ (сердце, печень, почки). В меньшем количестве ЛК обнаруживается также в овощах: в шпинате, брокколи, помидорах, горохе, брюссельской капусте. Кроме того, ЛК может синтезироваться в клетках человека de novo (то есть образовываться в организме естественным путем) в результате ряда биохимических реакций в митохондриях. ЛК и по химическому строению определяется как 1,2-дитиолан-3-пентаноевая кислота (С8Н14О2S2). У людей ЛК синтезируется в печени и других тканях.
