- •Гетеротрофные и аутотрофные организмы: различия по питанию и источникам энергии; катаболизм и анаболизм.
- •3. Распад гемма. Образование билирубина и билирубинглюкуронидов. Пути выведения желчных пигментов. Желтухи.
- •2Билет.
- •Первичная структура белков и ее влияние на конформацию белков. Серповидноклеточная анемия.
- •Обмен глицерина до конечных продуктов (со2 и н2о).
- •Аскорбиновая кислота: строение и биологическая роль.
- •4. Задача. В приемный покой больницы поступил мужчина с жалобами на острые боли в области сердца. Врач заподозрил инфаркт миокарда и назначил исследование ферментов крови: креатинкиназы, аст и лдг.
- •3Билет.
- •Общая характеристика класса гидролаз и их основные подклассы.
- •Непрямое дезаминирование аминокислот: последовательность реакций, характеристика ферментов, биологическое значение процесса.
- •4. Задача. Почему при остром алкогольном отравлении нередко наблюдается гипогликемия?
- •Механизм действия ферментов. Роль конформационных изменений фермента при катализе.
- •Какие ферменты цикла трикарбоновых кислот являются регуляторными? Какие соединения и как на них влияют?
- •Биосинтез рнк (транскрипция). Первичные транскрипты и созревание (процессинг) рибосомных, транспортных и матричных рнк.
- •Задача. Объясните, почему при употреблении в пищу преимущественно кукурузы и малого количества мяса возникает пеллагра? Напишите формулу соединения для лечения.
- •5Билет.
- •Охарактеризуйте четвертый класс ферментов: тип катализируемых реакций и назовите важнейшие группы ферментов внутри класса. Назовите несколько представителей и напишите химизм реакций.
- •Образование мевалоновой кислоты из ацетил-КоА
- •Синтез из мевалоновой кислоты «активного изопрена» с конденсацией последнего в сквален;
- •Превращение сквалена в холестерин.
- •Глюкозо-аланиновый цикл и его биологическая роль.
- •6Билет.
- •2. Биосинтез и использование кетоновых тел.
- •3. Ренин-ангиотензиновая система. Биохимический механизм развития почечной гипертензии.
- •Характеристика нуклеопротеинов: основные белковые компоненты и простетические группы.
- •Связанные с днк
- •Связанные с рнк
- •Обмен фенилаланина и тирозина. Молекулярная патология обмена этих аминокислот. Обмен циклических аминокислот фенилаланина и тирозина
- •4. Задача. О каком заболевании может идти речь, если у больного ребенка содержание глюкозы в крови натощак – 2,0 ммоль/л?
- •Классификация углеводов
- •10Билет
- •2. Какой биохимический механизм образно называют "ловушкой глюкозы" и почему? Пути превращения глюкозо - 6 - фосфата в организме.
- •3. Строение и биосинтез тиреоидных гормонов. Биологическая роль
- •Причины врожденной формы
- •Причины приобретенного гипотиреоза
- •4. Задача
- •11Билет
- •Изоферменты. Клиническое значение определения активности изоферментов на примере лактатдегидрогеназы и креатинкиназы.
- •Покажите путь азота от валина до азота мочевины.
- •Адреналин и норадреналин: биосинтез, распад, влияние на обмен веществ.
- •Задача. У людей с недостаточностью лактазы прием молока вызывает кишечные расстройства, а прием простокваши – нет. Почему? Напишите химизм.
- •12Билет.
- •13Билет
- •2. Аэробное дихотомическое окисление глюкозы.
- •3. Основные компоненты белоксинтетической системы. Что такое трансляция? Основные фазы трансляции.
- •14 Билет
- •2. Синтез глутамина: химизм, хар-ка фермента, биол. Значение.
- •15 Билет
- •2. В чем состоит биологическое значение карнитина? Опишите выполняемую им в клетках функцию.
- •3. Обмен железа: всасывание, транспорт кровью, депонирование. Нарушения обмена железа – железодефицитная анемия.
- •4. Задача. Будут ли у пациента обнаруживаться признаки недостаточности аспартата, если его рацион богат аланином, но беден аспартатом? Аргументируйте ответ.
- •16 Билет
- •2. Трансаминирование аминокислот. Аминотрансферазы, роль пиридоксальфосфата.
- •3. Представления о биосинтезе холестерина.
- •17 Билет
- •2. Пентозофосфатный путь окисления глюкозы. Написать окислительный этап образования пентоз, химизм реакций, ферменты и коферменты.
- •3.Липоевая кислота: строение и роль в обмене веществ.
- •4. Задача. Какую часть суточного расхода энергии в организме (около 12000 кДж) обеспечивает распад углеводов. (Суточное потребление углеводов около 500 г, при распаде 1 г глюкозы выделяется 15 кДж.
- •18 Билет
- •2. Покажите связь между обменом углеводов и жиров.
- •3. Тканевой распад гемоглобина, образование желчных пигментов.
- •4. Задача. Объяснить, почему при отравлениях солями тяжелых металлов (ртути, свинца, меди) применяют в качестве противоядия молоко, яйца?
- •19 Билет
- •2. Аэробное дихотомическое окисление глюкозы.
- •3. Основные компоненты белоксинтетической системы. Что такое трансляция? Основные фазы трансляции.
- •20 Билет
- •23 Билет
- •Лечение
4. Задача. Будут ли у пациента обнаруживаться признаки недостаточности аспартата, если его рацион богат аланином, но беден аспартатом? Аргументируйте ответ.
Не будет. Возможно превращение аланин – ПВК – оксалоацетат – аспартат.
16 Билет
Процессы катаболизма и анаболизма: характеристика и взаимосвязь. Эндергонические и экзергонические реакции в метаболизме.
Промежуточный обмен (внутриклеточный метаболизм) включает 2 типа реакций: катаболизм и анаболизм.
Катаболизм - процесс расщепления органических молекул до конечных продуктов. Конечные продукты превращений органических веществ у животных и человека - СО2, Н2О и мочевина. В процессы катаболизма включаются метаболиты, образующиеся как при пищеварении, так и при распаде структурно-функциональных компонентов клеток.
Реакции катаболизма сопровождаются выделением энергии (экзергонические реакции).
Анаболизм объединяет биосинтетические процессы, в которых простые строительные блоки соединяются в сложные макромолекулы, необходимые для организма. В анаболических реакциях используется энергия, освобождающаяся при катаболизме (эндергонические реакции).
Эндергонические и экзергонические реакции
Направление химической реакции определяется значением ΔG. Если эта величина отрицательна, то реакция протекает самопроизвольно и сопровождается уменьшением свободной энергии. Такие реакции называют экзергоническими. Если при этом абсолютное значение ΔG велико, то реакция идёт практически до конца, и её можно рассматривать как необратимую.
Если ΔG положительно, то реакция будет протекать только при поступлении свободной энергии извне; такие реакции называют эндергоническими.
Если абсолютное значение ΔG велико, то система устойчива, и реакция в таком случае практически не осуществляется. При ΔG, равном нулю, система находится в равновесии.
(Каждое органическое соединение, поступающее в организм извне или входящее в состав живой материи, обладает определённым запасом внутренней энергии (Е). Часть этой внутренней энергии может быть использована для совершения полезной работы. Такую энергию системы называют свободной энергией (G).)
2. Трансаминирование аминокислот. Аминотрансферазы, роль пиридоксальфосфата.
Трансаминирование — реакция переноса α-аминогруппы с АК на α-кетокислоту, в результате чего образуются новая α-кетокислота и новая АК.
Процесс трансаминирования легко обратим, при нем общее количество АК в клетке не меняется.
Сначала происходит обратимая реакция – перенос NH2-группы с аминокислоты на другую кетокислоту (трансаминирование). Последняя при этом превращается в аминокислоту. Механизм реакции трансаминирования достаточно сложен и протекает по принципу пинг-понг. Аминотрансферазы являются сложными ферментами, в качестве кофермента они имеют пиридоксальфосфат (активная форма витамина В6). Сначала к нему присоединяется аминокислота, превращается в кетокислоту и отделяется. Аминогруппа при этом переходит на кофермент и образуется пиридоксамин-фосфат. После этого присоединяется другая кетокислота, получает аминогруппу, образуется новая аминокислота и регенерирует пиридоксальфосфат.
Роль пиридоксальфосфата сводится к образованию промежуточных соединений – шиффовых оснований (альдимин, кетимин). Трансаминирование активируется:
• при поступлении в клетку избыточного количества аминокислот;
• при прекращении использования аминокислот на синтез азотсодержащих соединений: белков, креатина,фосфолипидов, пуриновых и пиримидиновых оснований;
• при гипогликемиях различного генеза, сахарном диабете, т.е. при внутриклеточном голодании.
В результате аминокислоты теряют NH2-группы и превращаются в соответствующие кетокислоты. Далее их кетоскелет катаболизирует специфическими путями и вовлекается в цикл трикарбоновых кислот, где сгорает до СО2 и Н2О.
