- •Учебное пособие «Измерение и учет электроэнергии»
- •Измерения в электрических цепях Измерения Общее понятие измерений
- •Измерение физических величин
- •Классификация измерений
- •Метрология
- •Законодательное и организационное направление метрологии
- •Эталоны и образцовые средства измерений
- •Погрешности измерений
- •Средства измерений
- •Классификация средств измерений
- •Техническое назначение средств измерений
- •Метрологические характеристики
- •Неметрологические характеристики
- •Поверка средств измерений
- •Виды поверки
- •Методики выполнения измерений
- •Измерительные приборы Классификация приборов:
- •Состав измерительных приборов и преобразователей
- •Отсчетные устройства
- •Классификация электроизмерительных приборов
- •Типы электроизмерительных приборов
- •Магнитоэлектрический измерительный механизм
- •Электромагнитный измерительный механизм
- •Электродинамический измерительный механизм
- •Ферродинамический механизм
- •Электростатический механизм
- •Индукционный механизм
- •Вибрационный (язычковый) механизм
- •Биметаллический механизм
- •Измерение тока
- •Измерение напряжения
- •Измерительные трансформаторы
- •Электроизмерительные клещи
- •Измерения в трехфазных цепях
- •Измерение мощности
- •Измерение сопротивления
- •Измерение коэффициента мощности
- •Измерение частоты и фазы
- •Цифровые измерения Микропроцессоры и микропроцессорные системы
- •Измерения в электроэнергетических системах
- •Общие правила проведения измерений в электроэнергетике
- •Регистрация электрических величин в аварийных ситуациях энергосистемы
- •Организация учета электрической энергии Типовая технологическая схема производства, передачи, распределения и потребления электроэнергии
- •Электроэнергия как товар. Структура цены электроэнергии.
- •Общие требования к учету электроэнергии
- •Учет электроэнергии на промышленных предприятиях и в бытовой сфере
- •Субъекты отношений в сфере коммерческого учета
- •Оптовый рынок ээ и мощности
- •Розничный рынок ээ
- •Тарифы, тарифные политики
- •Параметры счетчиков электроэнергии
- •Нормативная база счетчиков электроэнергии
- •Принцип работы счетчиков
- •Применение датчиков в счетчиках электроэнергии
- •Преимущества электронного счетчика
- •Защита от грозовых импульсов
- •Места установки приборов учета
- •Счетчики для коммерческого и технического учета
- •Эксплуатация и поверка приборов учета энергии
- •Общие сведения о системах аскуэ Назначение аскуэ
- •Понятия и термины аскуэ
- •Цели и задачи применения аскуэ
- •Виды аскуэ
- •Структура аскуэ
- •Аскуэ как часть одна из систем, применяемых на объектах электроэнергетики
- •Этапы создания аскуэ
- •Проектирование аскуэ
- •Выбор оборудования для построения аскуэ
- •Класс качества
- •Зарубежный опыт применения аскуэ
- •Интерфейсы. Каналы и линии связи
- •Функции и принцип работы успд
- •Серверы сбора информации
- •Примеры комплекса технических средств (ктс) для построения систем аскуэ
- •Примеры аскуэ для различных групп потребителей.
- •Структура системы учета энергоресурсов на основе технологии Smart Grid
- •Нормирование потребления энергоресурсов
- •Структура электроэнергии в электрических сетях
- •Методы сокращения коммерческих потерь
- •Нормирование потерь электроэнергии
- •Хищения электроэнергии
- •Показатели качества электроэнергии
- •Энергоаудит
- •Энергетическая стратегия России на период до 2030 года
- •Приборное обеспечение энергетических обследований
- •Энергетический паспорт
- •Характеристика потребления электроэнергии предприятиями и организациями
- •Энергосбережение
- •Возможные пути повышения энергоэффективности
- •Меры направленные на энергосбережение Снижение потерь в электросети
- •Экономический расчет энергоэффективности
- •Альтернативная энергия
- •Достоинства:
- •Недостатки
- •Список рекомендуемой литературы
Нормирование потребления энергоресурсов
Основная задача нормирования расхода топливно-энергетических ресурсов (ТЭР) - обеспечить применение в производстве и потреблении технически и экономически обоснованных норм расхода топлива, тепловой и электрической энергии для рационального распределения энергоресурсов и наиболее эффективного их использования.
Норма расхода топливно-энергетических ресурсов - это мера потребления этих ресурсов на единицу продукции (работы, услуги) определенного качества в планируемых условиях производства.
Фактический удельный расход - это количество энергии, фактически потребленное объектом на производство единицы продукции или работы в реальных условиях производства.
Основная задача нормирования расхода электроэнергии – обеспечить применение потребителем нормативно обоснованного метода расчета заявляемых объемов потребления электроэнергии для рационального ее использования.
Весь объём электроэнергии, потребляемый любым производством, делится на две составляющие:
1) Потребление электроэнергии, пропорциональное объёму производимой продукции:
П * Кw,
где П – количество произведённой продукции подразделением за временной интервал, т;
Кw – потребление электроэнергии за соответствующий интервал в производственном подразделении непосредственно на производство одной тонны продукции, кВт*ч/т;
2) Постоянная составляющая потребления электроэнергии, не зависящая от объёма производимой за определённый временной интервал продукции, Cw, кВт*ч
Временными интервалами могут быть час, сутки, неделя, месяц. По зависимости, принятой на сезон или месяц, определяется плановая норма удельного расхода электроэнергии.
Удельный расход электроэнергии:
w = W / П, кВт*ч/т;
где:W – полное потребление электроэнергии производственным подразделением за интервал, кВт*ч;
П – количество произведённой продукции подразделением за соответствующий интервал, т.
По мере роста объёма производства продукции за интервал снижается доля постоянной составляющей потребления электроэнергии в удельном расходе. По мере увеличения объёма производства (П) за интервал в удельном расходе электроэнергии (w) к пропорциональной количеству произведённой продукции составляющей (Кw) потребления электроэнергии добавляется всё уменьшающаяся доля постоянной составляющей (Cw / П).
Структура электроэнергии в электрических сетях
1. Фактические (отчетные) потери электроэнергии ΔWОтч определяют как разность электроэнергии, поступившей в сеть, и электроэнергии, отпущенной из сети потребителям.
Разделение потерь на составляющие может проводиться по разным критериям: характеру потерь (постоянные, переменные), классам напряжения, группам элементов, производственным подразделениями и т.д.
Учитывая физическую природу и специфику методов определения количественных значений фактических потерь, они могут быть разделены на четыре составляющие:
1) технические потери электроэнергии ΔWТ, обусловленные физическими процессами в проводах и электрооборудовании, происходящими при передаче электроэнергии по электрическим сетям; складываются из нагрузочных потерь и потерь холостого хода;
2) расход электроэнергии на собственные нужды подстанций ΔWСН, необходимый для обеспечения работы технологического оборудования подстанций и жизнедеятельности обслуживающего персонала, определяемый по показаниям счетчиков, установленных на трансформаторах собственных нужд подстанций;
3) потери электроэнергии, обусловленные инструментальными погрешностями их измерения (инструментальные потери) ΔWИзм;
4) коммерческие потери ΔWК, обусловленные хищениями электроэнергии, несоответствием показаний счетчиков оплате за электроэнергию бытовыми потребителями и другими причинами в сфере организации контроля за потреблением энергии. Их значение определяют как разницу между фактическими (отчетными) потерями и суммой первых трех составляющих:
ΔWК =ΔWОтч - ΔWТ - ΔWСН - ΔWИзм.
В номенклатуру собственных нужд подстанций входит потребление электроэнергии на следующие цели:
- охлаждение трансформаторов и автотрансформаторов;
- обогрев, освещение и вентиляция помещений (ОПУ, ЗРУ, ОВБ, аккумуляторной, компрессорной, насосной пожаротушения, здания вспомогательных устройств синхронных компенсаторов, проходной);
- освещение территории;
- зарядно-подзарядные устройства аккумуляторных батарей;
- оперативные цепи и цепи управления (на подстанциях с переменным оперативным током);
- обогрев
- другие.
Структура коммерческих потерь:
1. Потери из-за недостатков в энергосбытовой деятельности – при выставлении счетов, несоответствие дат снятия показаний счетчиков с расчетным периодом;
2. Потери при востребовании оплаты за потребленную электроэнергию – задержки платежей, неполная оплата;
3. Хищение электроэнергии – незаконное подключение к сетям электроснабжения, мошенничество с приборами учета;
4. Потери на истребование долгов, выявление и ликвидацию хищения, судебные расходы;
5. Потери из-за нарушения качества электроэнергии – отказ от оплаты некачественной электроэнергии, затраты на ремонт и ликвидацию причина нарушения качества.
Три первые составляющие структуры потерь обусловлены технологическими потребностями процесса передачи электроэнергии по сетям и инструментального учета ее поступления и отпуска. Сумма этих составляющих хорошо описывается термином технологические потери. Четвертая составляющая - коммерческие потери - представляет собой воздействие "человеческого фактора" и включает в себя все его проявления: сознательные хищения электроэнергии некоторыми абонентами с помощью изменения показаний счетчиков, неоплату или неполную оплату показаний счетчиков и т.п.
Сумму технических потерь, расхода электроэнергии на собственные нужды подстанций можно назвать физическими потерями электроэнергии, связанные с физикой распределения энергии по сети.
Принципы развития Единой энергетической системы (ориентация на крупные электростанции и протяженные линии электропередачи или сравнительно маломощные станции, расположенные в центрах нагрузки, и т. п.) закладываются на концептуальном уровне. Этому уровню соответствует наиболее широкий интервал возможных значений технических потерь. Например, в Германии и Японии потери электроэнергии в сетях находятся на уровне 4—5 %, а в Канаде и Норвегии, странах с протяженной территорией и концентрированной генерацией электроэнергии на мощных электростанциях - на уровне, близком к 10 %. Взаимное расположение электростанций и потребителей в каждой стране уникально, попытки найти «похожие» сети практически бессмысленны. Поэтому сама по себе информация о фактических потерях электроэнергии в сетях Голландии или Танзании может быть любопытной, но надо понимать, что конструктивных выводов для российских условий из этой информации сделать нельзя. Экономически обоснованный уровень технических потерь в сетях России может быть определен только на основании расчетов для конкретных схем и нагрузок сетей.
Оперативные задачи, решаемые в рамках автоматизированных систем диспетчерского управления (АСДУ), основаны на достаточно достоверной информации, получаемой от средств телеизмерений, на детерминированных алгоритмах определения оптимальных режимов (целей управления) и на телеуправлении устройствами их регулирования. Решения принимаются исходя из текущей ситуации; интегральная оценка эффективности решения производится на сравнительно непродолжительном интервале времени, определяемом, как правило, периодичностью работы переключающих устройств.
Более сложная ситуация характерна для решений, принимаемых на эксплуатационно-реконструктивном уровне. Однозначно определить оптимальный уровень потерь электроэнергии в сети можно лишь при известных нагрузках, стоимости электроэнергии и устройств, применяемых для снижения потерь. Появление устройств с новыми характеристиками (например, молекулярных конденсаторов промышленного изготовления или трансформаторов с резко сниженными потерями за счет использования явления сверхпроводимости), снижение стоимости известных устройств, обусловленное совершенствованием технологии их производства, изменение стоимости электроэнергии и тому подобные факторы изменяют оптимальное значение потерь и приоритеты в адаптации сети к новой оптимальной цели.
В связи с тем, что достоверный прогноз нагрузок на длительную перспективу затруднен (например, в 1985 г. никто не мог предполагать развития событий в 1990-х гг.), также как и предсказание сроков появления новых технических средств, решения, принимаемые на основе предположений о динамике изменения показателей на длительном периоде, часто оказываются неоптимальными. Поэтому основным направлением снижения потерь электроэнергии является адаптация режимов и параметров сети к условиям, прогнозируемым на несколько лет вперед и ежегодно корректируемым при появлении новой информации.
