- •Учебное пособие «Измерение и учет электроэнергии»
- •Измерения в электрических цепях Измерения Общее понятие измерений
- •Измерение физических величин
- •Классификация измерений
- •Метрология
- •Законодательное и организационное направление метрологии
- •Эталоны и образцовые средства измерений
- •Погрешности измерений
- •Средства измерений
- •Классификация средств измерений
- •Техническое назначение средств измерений
- •Метрологические характеристики
- •Неметрологические характеристики
- •Поверка средств измерений
- •Виды поверки
- •Методики выполнения измерений
- •Измерительные приборы Классификация приборов:
- •Состав измерительных приборов и преобразователей
- •Отсчетные устройства
- •Классификация электроизмерительных приборов
- •Типы электроизмерительных приборов
- •Магнитоэлектрический измерительный механизм
- •Электромагнитный измерительный механизм
- •Электродинамический измерительный механизм
- •Ферродинамический механизм
- •Электростатический механизм
- •Индукционный механизм
- •Вибрационный (язычковый) механизм
- •Биметаллический механизм
- •Измерение тока
- •Измерение напряжения
- •Измерительные трансформаторы
- •Электроизмерительные клещи
- •Измерения в трехфазных цепях
- •Измерение мощности
- •Измерение сопротивления
- •Измерение коэффициента мощности
- •Измерение частоты и фазы
- •Цифровые измерения Микропроцессоры и микропроцессорные системы
- •Измерения в электроэнергетических системах
- •Общие правила проведения измерений в электроэнергетике
- •Регистрация электрических величин в аварийных ситуациях энергосистемы
- •Организация учета электрической энергии Типовая технологическая схема производства, передачи, распределения и потребления электроэнергии
- •Электроэнергия как товар. Структура цены электроэнергии.
- •Общие требования к учету электроэнергии
- •Учет электроэнергии на промышленных предприятиях и в бытовой сфере
- •Субъекты отношений в сфере коммерческого учета
- •Оптовый рынок ээ и мощности
- •Розничный рынок ээ
- •Тарифы, тарифные политики
- •Параметры счетчиков электроэнергии
- •Нормативная база счетчиков электроэнергии
- •Принцип работы счетчиков
- •Применение датчиков в счетчиках электроэнергии
- •Преимущества электронного счетчика
- •Защита от грозовых импульсов
- •Места установки приборов учета
- •Счетчики для коммерческого и технического учета
- •Эксплуатация и поверка приборов учета энергии
- •Общие сведения о системах аскуэ Назначение аскуэ
- •Понятия и термины аскуэ
- •Цели и задачи применения аскуэ
- •Виды аскуэ
- •Структура аскуэ
- •Аскуэ как часть одна из систем, применяемых на объектах электроэнергетики
- •Этапы создания аскуэ
- •Проектирование аскуэ
- •Выбор оборудования для построения аскуэ
- •Класс качества
- •Зарубежный опыт применения аскуэ
- •Интерфейсы. Каналы и линии связи
- •Функции и принцип работы успд
- •Серверы сбора информации
- •Примеры комплекса технических средств (ктс) для построения систем аскуэ
- •Примеры аскуэ для различных групп потребителей.
- •Структура системы учета энергоресурсов на основе технологии Smart Grid
- •Нормирование потребления энергоресурсов
- •Структура электроэнергии в электрических сетях
- •Методы сокращения коммерческих потерь
- •Нормирование потерь электроэнергии
- •Хищения электроэнергии
- •Показатели качества электроэнергии
- •Энергоаудит
- •Энергетическая стратегия России на период до 2030 года
- •Приборное обеспечение энергетических обследований
- •Энергетический паспорт
- •Характеристика потребления электроэнергии предприятиями и организациями
- •Энергосбережение
- •Возможные пути повышения энергоэффективности
- •Меры направленные на энергосбережение Снижение потерь в электросети
- •Экономический расчет энергоэффективности
- •Альтернативная энергия
- •Достоинства:
- •Недостатки
- •Список рекомендуемой литературы
Методики выполнения измерений
Методика выполнения измерений (МВИ) – совокупность операций и правил, выполнение которых обеспечивает получение результатов измерений с известной точностью. Методики разрабатывают и используют для выполнения измерений с погрешностью, характеристики которой не хуже гарантированной в научно-технической документации на МВИ.
Повышение результатов измерений с известной погрешностью или с погрешностью, не превышающей допустимых пределов, является одним из важнейших условий обеспечения единства измерений. С этой целью разрабатываются методики выполнения измерений (МВИ).
Из определения следует, что под МВИ понимают технологический процесс измерения, поэтому не следует смешивать МВИ и документ на МВИ.
Не все МВИ могут быть описаны или регламентированы документом на МВИ. Например, такие простейшие измерения, как измерения давления с помощью показывающих манометров, электрических величин щитовыми приборами, линейно-угловые измерения, измерения массы и многих других величин с помощью простых средств измерений, не требуют документированных МВИ. Необходимость документации МВИ устанавливает разработчик конструкторской, технологической или проектной документации. Или же разработку документа на МВИ может потребовать заказчик.
По общим приемам получения результатов измерений методы различают на:
прямой метод измерений - измерение, при котором искомое значение величины находят непосредственно из опытных данных. Прямые измерения не требуют методики проведения измерений и проводятся по эксплуатационной документации на применяемое средство измерений;
косвенный метод измерений - измерение, результат которого определяют на основании прямых измерений величин, связанных с измеряемой величиной известной зависимостью. Косвенные измерения применяются в случаях, когда невозможно выполнить прямые измерения, например при определении плотности твердого тела, вычисляемой по результатам измерений объема и массы.
По условиям измерения:
контактный метод измерений - основан на том, что чувствительный элемент прибора приводится в контакт с объектом измерения (измерение температуры тела термометром);
бесконтактный метод измерений - основан на том, что чувствительный элемент прибора не приводится в контакт с объектом измерения (измерение расстояния до объекта радиолокатором, измерение температуры в доменной печи пирометром).
Исходя из способа сравнения измеряемой величины с ее единицей, различают:
непосредственной оценки - метод при котором значение величины определяют непосредственно по отсчетному устройству показывающего СИ (термометр, вольтметр и пр.). Мера, отражающая единицу измерения, в измерении не участвует. Ее роль играет в СИ шкала, проградуированная при его производстве с помощью достаточно точных СИ.
метод сравнения с мерой -метод при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой (измерение массы на рычажных весах с уравновешиванием гирями). Существует три разновидности этого метода:
нулевой метод - метод сравнения с мерой, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля, например, измерения электрического сопротивления мостом с полным его уравновешиванием;
метод замещения - основан на сравнении с мерой, при котором измеряемую величину замещают известной величиной, воспроизводимой мерой, сохраняя все условия неизменными, например взвешивание c поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов;
метод совпадений - метод сравнения с мерой, в котором разность между значениями искомой и воспроизводимой мерой величин измеряют, используя совпадения отметок шкал или периодических сигналов, например при измерении с использованием штангенциркуля нониусом наблюдают совпадение меток на шкалах штангенциркуля
Методики выполнения измерений разрабатывают и применяют с целью обеспечения выполнения измерений с погрешностью, характеристики которой не хуже гарантированной в научно-технической документации на МВИ.
По способам учета свойств СИ, по средствам которых реализуется МВИ, различают:
1. типовые МВИ, гарантированные характеристики погрешностей, которые определены с учетом возможности применений любого экземпляра СИ и вспомогательных технических устройств.
2. индивидуальные МВИ, гарантированные характеристики погрешностей, которых определены с учетом индивидуальных вспомогательных устройств.
МВИ в зависимости от сложности и области распространения регламентируют:
1. отдельным документом.
2. разделом, содержащим описание МВИ более общего научно-технического документа.
3. указанием в конструкторском, технологическом или эксплуатационном документе на продукцию.
Исходные данные для разработки МВИ должны включать:
1. назначение МВИ. В назначении указывают:
• наименование измеряемой величины и ее характеристики;
• область ограничения применения МВИ по видам и характеристикам объекта измерения.
2. Норму погрешностей измерения. Их задают в виде характеристик, рекомендуемых ИД со ссылкой на документ, где они установлены.
3. Условия измерения. Их задают в виде диапазона значений влияющих величин (климатические, механические, электрические и т.д.).
4. Характеристики объекта измерений. Они задаются предельными значениями таких параметров объекта измерений, отклонение которых от номинального значения влияет на погрешность измерения.
1. Выбор методов и СИ в процессе разработки МВН осуществляется на основе исходных данных:
• описание объектов измерений их свойств, которые должны быть определены измерением;
• виды измеряемой величины диапазоны ее возможных значений, наибольшая возможность частоты её измерений.
2. Рациональным считается такое решение о выборе методов и СИ при котором минимизируются затраты на измерение.
3. Выбор методов и СИ должен основываться на учете следующих фактов:
• измеряемая величина соответствует некоторой модели объекта измерений, принятой за адекватно отражающие свойства объекта;
• возможно использование вторичного процесса. Процесс характеризуется определенной функциональной зависимостью информационного параметра от измеряемой величины.
• измерение величины при косвенных измерениях передаются от объекта измеряемых СИ в общем случае так, что, не обеспечивая строгое равенство размеров измеряемой величины у объекта измерений и на входе СИ;
• при косвенных измерениях результат измерений вычисляют по результатам прямых измерений и этот алгоритм не всегда идентичен прямому измерению измеряемой величины;
• при косвенных измерениях на погрешность может влиять корреляция погрешности прямых измерений;
• на погрешность измерения оказывает влияние метрологической характеристики СИ. Для повышения точности в МВИ может быть предусмотрено применение СИ определенных типов, но при условии их предварительной метрологической аттестации, при которой определяют действительное значение метрологических характеристик. Это позволит при расчете характеристик погрешностей измерений пользоваться не номинальными, а действительными.
Технические средства для измерений
Измерительный прибор - средство измерения, предназначенное для выработки сигнала измерительной информации в установленном диапазоне в форме, доступной для непосредственного восприятия наблюдателем.
Измерительный преобразователь- средство измерения, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки, индикации или хранения.
В отличие от измерительного прибора сигнал на выходе измерительного преобразователя не может восприниматься наблюдателем. Измеряемая величина, поступающая на измерительный преобразователь, называется входной, преобразованная - выходной. Соотношение, устанавливающее связь между входной и выходной величинами, называется функцией преобразования измерительного преобразователя и является для него основной метрологической характеристикой. Функция преобразования может быть выражена формулой, графиком, таблицей.
Разновидностью измерительного преобразователя является датчик. Датчик – конструктивно обособленный первичный преобразователь, от которого поступают измерительные сигналы (он поставляет информацию). Пример. Датчики тока передают измерительную информацию о величине тока.
Измерительная установка - совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, предназначенных для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем, и расположенных в одном месте.
Измерительная система Измерительно-вычислительный комплекс () - совокупность средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, соединенных между собой каналами связей, предназначенных для выработки сигналов измерительной информации в форме, удобной для автоматической обработки передачи и (или) использования в автоматических системах управления. Это функционально объединенная совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенная для выполнения в составе измерительной системы конкретной измерительной задачи.
