- •Билет 1
- •Общие представления о высокомолекулярных соединениях (вмс), основные понятия и определения.
- •3.Ограниченное набухание.
- •4.Как можно доказать наличие белков в продуктах питания, в шерстяных и шелковых тканях?
- •Билет 2
- •1.Высокомолекулярные соединения, их роль в природе и значение в народном хозяйстве.
- •2. Функции белков в организме.
- •3. Радикальная полимеризация.
- •Билет 3
- •1. Классификация полимеров по происхождению.
- •2. Функции нуклеиновых кислот в организме.
- •3.Катионная полимеризация.
- •Билет 4
- •1.Классификация полимеров по строению главной цепи.
- •2. Функции углеводов в организме.
- •3.Анионная полимеризация.
- •Билет 5
- •1.Понятие о гомо- и сополимерах.
- •2. Амфифильность биополимеров и способность к самоорганизации.
- •3.Неограниченное набухание.
- •Билет 6
- •1. Понятие о дендримерах.
- •2. Первичная структура белка.
- •3. Коллоидные растворы.
- •Билет 7
- •1. Понятие о стереорегулярности полимеров. Примеры.
- •2. Вторичная структура белка.
- •3. Дисперсии и эмульсии.
- •Билет № 8
- •1. Классификация полимеров по форме макромолекул.
- •2. Третичная структура белка.
- •3. Студни и гели.
- •Билет №9
- •1. Классификация полимеров по отношению к нагреванию. Примеры полимеров.
- •2. Понятие о фибриллярных и глобулярных белках.
- •3. Метод седиментации (центрифугирования).
- •Билет №10
- •1. Ступенчатая полимеризация.
- •2. Строение и функции коллагена в организме.
- •3. Ионизующиеся макромолекулы (полиэлектролиты).
- •4. Сколько продукта можно получить из 20 г фенола, если степень полимеризации составляет 8, а выход продукта составляет 70%. Билет №11
- •Влияние условий проведения на процесс полимеризации.
- •Структура и особенности глобулярных белков.
- •Понятие об агрегатных и фазовых состояниях полимеров.
- •Билет №12
- •1. Классификация волокон (с примерами).
- •2. Олигосахариды.
- •3. Способы проведения поликонденсации.
- •Билет №13
- •1. Кинетика, катализ при поликонденсации.
- •2. Состав и структура дисахаридов.
- •3. Классификация структуры полимерных цепей по Китайгородскому а.И.
- •Билет №14
- •1. Молекулярно-массовое распределение при поликонденсации.
- •2. Резервные полисахариды.
- •3. Кристаллическое фазовое состояние полимеров.
- •1. Полимеризация в растворе.
- •2. Гликопротеины и протеогликаны.
- •3. Значение процесса поликонденсации в природе и технике.
- •Сольватация. Гидрогели.
- •Мукополисахариды.
- •Эмульсионная полимеризация.
- •Понятие о физических состояниях аморфных полимеров.
- •Первичная структура нуклеиновых кислот.
- •Превращениям полимеров, не вызывающим существенного изменения степени их полимеризации.
- •Пластификация полимеров.
- •Суспензионная полимеризация.
- •Механические свойства полимеров в аморфно-кристаллическом состоянии.
- •3.Компаундирование.
- •Понятие о пластмассах. Норпласты.
- •Полиморфизм днк.
- •Теломеризация.
- •Анизотропия механических свойств полимеров.
- •Вторичная и третичная структура рнк.
- •Химические превращения полимеров, приводящие к изменению молекулярной массы полимера.
- •Композиционные материалы (композиты).
- •Нуклеосомы.
- •Механическая деструкция полимеров.
- •Термическая деструкция.
- •Наднуклеосомная укладка днк.
- •Сравнение процессов полимеризации и поликонденсации.
- •1.Фотохимическая деструкция.
- •Белок-белковые взаимодействия. Примеры.
- •Каландрование.
- •Радиационная и ультразвуковая деструкция полимеров.
- •Типы белок-белковых взаимодействий.
Билет 5
1.Понятие о гомо- и сополимерах.
Гомополимер (англ. homopolymer) — полимеры, в состав которых входит единственный тип мономеров (целлюлоза).
Сополимеры — разновидность полимеров, цепочки молекул которых состоят из двух или более различных структурных звеньев. Различают регулярные и нерегулярные сополимеры (коих большинство). Различные структурные звенья нерегулярных сополимеров беспорядочно расположены вдоль цепочки. В регулярных же сополимерах различные структурные звенья расположены упорядоченно и, следовательно, регулярные сополимеры могут быть представлены как обычные полимеры с большими структурными звеньями. Отдельно можно назвать блок-сополимеры, состоящие из нескольких (гомо)полимерных блоков.
Сополимеры получаются в результате реакций сополимеризации.
Мономеры, из которых изготавливаются сополимеры, могут быть по-разному скомбинированны. Наиболее вероятные способы:
* чередующийся (A-B)n
* периодический (A-B-A)n
* статистический (A-A-B-A-A-A-B-B-A-B)
* блок-сополимер (A)n-(B)m
2. Амфифильность биополимеров и способность к самоорганизации.
Амфифильность (иначе дифильность) — свойство молекул веществ (как правило, органических), обладающих одновременно лиофильными (в частности, гидрофильными) и лиофобными (гидрофобными) свойствами.
Амфифильными свойствами обладают липиды, многие пептиды, белки, полимеры.
В частности, к амфифильным веществам относятся фосфолипиды, а также липопротеины. За счет амфифильных свойств фосфолипидов при взаимодействии с водой они формируют мицеллы, липосомы и липидные бислои. Белки обладают амфифильными свойствами, так как обычно в их состав входят аминокислоты с гидрофильными и с гидрофобными радикалами. Амфифильность белков влияет на образуемые ими третичные и четвертичные структуры молекул. Основное свойство амфифильных молекул заключается в том, что гидрофобные группы стремятся увеличить число контактов друг с другом, а гидрофильные группы - с молекулами растворителя, что приводит к образованию сложных структур.
Структурообразование и самоорганизация в полимерных системах с амфифильными свойствами в последнее время вызывает все больший интерес. Во многом это связано с развитием экспериментальных методов исследования живой клетки, ее структуры и свойств. Было обнаружено, что клетки организма практически полностью состоят из амфифильных макромолекул и низкомолекулярных веществ. Различные надмолекулярные структуры в клетках, вторичная и третичная структуры белка образуются в основном за счет амфифильных взаимодействий, в том числе водородного связывания.
3.Неограниченное набухание.
Неограниченное набухание – это набухание, самопроизвольно переходящее в растворение. Оно аналогично неограниченному смешению жидкостей, например воды и этилового спирта. Неограниченное набухание характерно для линейных аморфных полимеров с невысокой степенью полимеризации, сольватированные макромолекулы которых легко и быстро могут переходить в раствор. Степень набухания, после которой начинается растворение, должна быть достаточной для полной сольватации макромолекул и их отделения от остальной массы набухающего полимера, т.е. растворения. Таким образом, вокруг набухающего образца полимера образуется слой
раствора полимера.
В результате диффузии макромолекулы равномерно распределяются по всему объему растворителя и в конце растворения образуют однофазную гомогенную систему. Кинетика набухания некоторых полимеров показана на рис. 1.
До точки а для всех полимеров наблюдается постепенно замедляющееся увеличение степени набухания (вследствие более интенсивного набухания в начале процесса). В точке а скорость растворения становится равной скорости набухания и некоторое время степень набухания не изменяется. В точке б скорость растворения начинает превышать скорость набухания, и масса образцов уменьшается. Между точками а и б образцы имеют максимальную степень набухания Qмакс. в течение времени Δτ. Из сопоставления кривых набухания можно сделать вывод, что чем ниже молекулярная масса, меньше разветвленность макромолекул и межмолекулярное взаимодействие и выше термодинамическое сродство между полимером и растворителем – тем меньше
Qмакс. и Δτ. При очень высокой молекулярной массе или сильном межмолекулярном взаимодействии некоторые полимеры (например, белки) растворяются крайне медленно (кривая 3) и могут сохранять максимальную степень набухания в течение длительного времени, т.е. Характеризуются ограниченным набуханием. Для растворения таких набухших полимеров требуется перемешивание, повышенная температура; при этом межмолекулярное взаимодействие ослабляется и повышается подвижность макромолекул, что ускоряет их растворение.
