- •Билет 1
- •Общие представления о высокомолекулярных соединениях (вмс), основные понятия и определения.
- •3.Ограниченное набухание.
- •4.Как можно доказать наличие белков в продуктах питания, в шерстяных и шелковых тканях?
- •Билет 2
- •1.Высокомолекулярные соединения, их роль в природе и значение в народном хозяйстве.
- •2. Функции белков в организме.
- •3. Радикальная полимеризация.
- •Билет 3
- •1. Классификация полимеров по происхождению.
- •2. Функции нуклеиновых кислот в организме.
- •3.Катионная полимеризация.
- •Билет 4
- •1.Классификация полимеров по строению главной цепи.
- •2. Функции углеводов в организме.
- •3.Анионная полимеризация.
- •Билет 5
- •1.Понятие о гомо- и сополимерах.
- •2. Амфифильность биополимеров и способность к самоорганизации.
- •3.Неограниченное набухание.
- •Билет 6
- •1. Понятие о дендримерах.
- •2. Первичная структура белка.
- •3. Коллоидные растворы.
- •Билет 7
- •1. Понятие о стереорегулярности полимеров. Примеры.
- •2. Вторичная структура белка.
- •3. Дисперсии и эмульсии.
- •Билет № 8
- •1. Классификация полимеров по форме макромолекул.
- •2. Третичная структура белка.
- •3. Студни и гели.
- •Билет №9
- •1. Классификация полимеров по отношению к нагреванию. Примеры полимеров.
- •2. Понятие о фибриллярных и глобулярных белках.
- •3. Метод седиментации (центрифугирования).
- •Билет №10
- •1. Ступенчатая полимеризация.
- •2. Строение и функции коллагена в организме.
- •3. Ионизующиеся макромолекулы (полиэлектролиты).
- •4. Сколько продукта можно получить из 20 г фенола, если степень полимеризации составляет 8, а выход продукта составляет 70%. Билет №11
- •Влияние условий проведения на процесс полимеризации.
- •Структура и особенности глобулярных белков.
- •Понятие об агрегатных и фазовых состояниях полимеров.
- •Билет №12
- •1. Классификация волокон (с примерами).
- •2. Олигосахариды.
- •3. Способы проведения поликонденсации.
- •Билет №13
- •1. Кинетика, катализ при поликонденсации.
- •2. Состав и структура дисахаридов.
- •3. Классификация структуры полимерных цепей по Китайгородскому а.И.
- •Билет №14
- •1. Молекулярно-массовое распределение при поликонденсации.
- •2. Резервные полисахариды.
- •3. Кристаллическое фазовое состояние полимеров.
- •1. Полимеризация в растворе.
- •2. Гликопротеины и протеогликаны.
- •3. Значение процесса поликонденсации в природе и технике.
- •Сольватация. Гидрогели.
- •Мукополисахариды.
- •Эмульсионная полимеризация.
- •Понятие о физических состояниях аморфных полимеров.
- •Первичная структура нуклеиновых кислот.
- •Превращениям полимеров, не вызывающим существенного изменения степени их полимеризации.
- •Пластификация полимеров.
- •Суспензионная полимеризация.
- •Механические свойства полимеров в аморфно-кристаллическом состоянии.
- •3.Компаундирование.
- •Понятие о пластмассах. Норпласты.
- •Полиморфизм днк.
- •Теломеризация.
- •Анизотропия механических свойств полимеров.
- •Вторичная и третичная структура рнк.
- •Химические превращения полимеров, приводящие к изменению молекулярной массы полимера.
- •Композиционные материалы (композиты).
- •Нуклеосомы.
- •Механическая деструкция полимеров.
- •Термическая деструкция.
- •Наднуклеосомная укладка днк.
- •Сравнение процессов полимеризации и поликонденсации.
- •1.Фотохимическая деструкция.
- •Белок-белковые взаимодействия. Примеры.
- •Каландрование.
- •Радиационная и ультразвуковая деструкция полимеров.
- •Типы белок-белковых взаимодействий.
Билет 3
1. Классификация полимеров по происхождению.
Классификация полимеров по происхождению:
1. Природные (натуральный каучук, белки)
2. Модифицированные (измененные природные, например, резина);
3. Синтетические (полученные из низкомолекулярных веществ путем синтеза, например, полиэтилен). Природные полимеры, применение которых широко осуществлялось с самой древности. Это такие макромолекулы, для создания которых человек не прилагал никаких усилий. Они являются продуктами реакций самой природы. Примеры: шелк, шерсть, белок, нуклеиновые кислоты, крахмал, целлюлоза, кожа, хлопок и прочие. Искусственные. Это такие макромолекулы, которые создаются человеком, но на основе природных аналогов. То есть просто улучшаются и изменяются свойства уже имеющегося природного полимера. Примеры: искусственный каучук, резина. Синтетические – это такие полимеры, в создании которых участвует только человек. Природных аналогов для них нет. Ученые разрабатывают методы синтеза новых материалов, которые отличались бы улучшенными техническими характеристиками. Так рождаются синтетические полимерные соединения разного рода. Примеры: полиэтилен, полипропилен, вискоза, ацетатное волокно и прочее.
2. Функции нуклеиновых кислот в организме.
Функции нуклеиновых кислот
Нуклеиновым кислотам присущи три важнейшие функции: хранение, передача и реализация генетической информации. Кроме этих, они выполняют и другие функции, например, участвуют в катализе некоторых химических реакций, осуществляют регуляцию реализации генетической информации, выполняют структурные функции и др. Роль хранителя генетической информации у большинства организмов (эукариот, прокариот, некоторых вирусов) выполняют двухцепочечные ДНК. Только у некоторых вирусов хранителем генетической информации являются одноцепочечные ДНК или одноцепочечные, а также двухцепочечные РНК. Генетическая информация записана в генах. Ген по своей природе является участком нуклеиновой кислоты. В них закодирована первичная структура белков. Гены могут также нести информацию о структуре некоторых типов РНК, например, тРНК и рРНК.
Генетическая информация передается от родителей к потомкам. Этот процесс связан с удвоением нуклеиновой кислоты (ДНК или РНК), выполняющей функцию хранителя генетической информации, и последующей передачи ее потомкам. Например, в результате деления дочерние клетки получают от материнской идентичные молекулы ДНК, а следовательно, и идентичную генетическую информацию (рис. 38). При размножении вирусы также передают дочерним вирусным частицам точные копии нуклеиновой кислоты. При половом размножении потомки получают генетическую информацию от обоих родителей. Вот почему дети наследуют признаки обоих родителей.
3.Катионная полимеризация.
Катионная полимеризация. При катионной полимеризации растущая цепь на конце имеет положительный заряд. В качестве катализаторов используются соединения, обладающие электроноакцепторными свойствами – протонные кислоты, кислоты Льюиса, совместно с сокатализаторами. По катионному механизму легко полимеризуются виниловые и дивиниловые соединения с электродонорными заместителями (алкил, винил, фенил) у двойной связи (изобутилен, α-метилстирол, винилалкиловые эфиры и др.), а также некоторые карбонильные соединения (формальдегид), гетероциклические мономеры (окись этилена, окись пропилена, тетрагидрофуран и т.д.). Катионную полимеризацию винилового мономера в присутствии и небольших количеств воды (сокатализатора) можно представить следующим образом. Инициирование: а) взаимодействие катализатора и сокатализатора с образованием комплексного соединения, которое проявляет свойства сильной кислоты:10 б) взаимодействие этого комплексного катализатора с молекулой мономера и превращение последнего в карбониевый ион путем передачи протона: Рост цепи - это последовательное присоединение молекул мономера, внедряющихся между макрокарбкатионом и противоионом: Обрыв цепи при катионной полимеризации, в отличие от радикальной полимеризации, не является бимолекулярной, так как два одинаково заряженных активных центров не могут взаимодействовать. Остановка роста цепи идет по мономолекулярному механизму, чаще в результате реакции макрокатиона с противоионом, либо путем передачи цепи на мономер, растворитель и т.д.
