- •Билет 1
- •Общие представления о высокомолекулярных соединениях (вмс), основные понятия и определения.
- •3.Ограниченное набухание.
- •4.Как можно доказать наличие белков в продуктах питания, в шерстяных и шелковых тканях?
- •Билет 2
- •1.Высокомолекулярные соединения, их роль в природе и значение в народном хозяйстве.
- •2. Функции белков в организме.
- •3. Радикальная полимеризация.
- •Билет 3
- •1. Классификация полимеров по происхождению.
- •2. Функции нуклеиновых кислот в организме.
- •3.Катионная полимеризация.
- •Билет 4
- •1.Классификация полимеров по строению главной цепи.
- •2. Функции углеводов в организме.
- •3.Анионная полимеризация.
- •Билет 5
- •1.Понятие о гомо- и сополимерах.
- •2. Амфифильность биополимеров и способность к самоорганизации.
- •3.Неограниченное набухание.
- •Билет 6
- •1. Понятие о дендримерах.
- •2. Первичная структура белка.
- •3. Коллоидные растворы.
- •Билет 7
- •1. Понятие о стереорегулярности полимеров. Примеры.
- •2. Вторичная структура белка.
- •3. Дисперсии и эмульсии.
- •Билет № 8
- •1. Классификация полимеров по форме макромолекул.
- •2. Третичная структура белка.
- •3. Студни и гели.
- •Билет №9
- •1. Классификация полимеров по отношению к нагреванию. Примеры полимеров.
- •2. Понятие о фибриллярных и глобулярных белках.
- •3. Метод седиментации (центрифугирования).
- •Билет №10
- •1. Ступенчатая полимеризация.
- •2. Строение и функции коллагена в организме.
- •3. Ионизующиеся макромолекулы (полиэлектролиты).
- •4. Сколько продукта можно получить из 20 г фенола, если степень полимеризации составляет 8, а выход продукта составляет 70%. Билет №11
- •Влияние условий проведения на процесс полимеризации.
- •Структура и особенности глобулярных белков.
- •Понятие об агрегатных и фазовых состояниях полимеров.
- •Билет №12
- •1. Классификация волокон (с примерами).
- •2. Олигосахариды.
- •3. Способы проведения поликонденсации.
- •Билет №13
- •1. Кинетика, катализ при поликонденсации.
- •2. Состав и структура дисахаридов.
- •3. Классификация структуры полимерных цепей по Китайгородскому а.И.
- •Билет №14
- •1. Молекулярно-массовое распределение при поликонденсации.
- •2. Резервные полисахариды.
- •3. Кристаллическое фазовое состояние полимеров.
- •1. Полимеризация в растворе.
- •2. Гликопротеины и протеогликаны.
- •3. Значение процесса поликонденсации в природе и технике.
- •Сольватация. Гидрогели.
- •Мукополисахариды.
- •Эмульсионная полимеризация.
- •Понятие о физических состояниях аморфных полимеров.
- •Первичная структура нуклеиновых кислот.
- •Превращениям полимеров, не вызывающим существенного изменения степени их полимеризации.
- •Пластификация полимеров.
- •Суспензионная полимеризация.
- •Механические свойства полимеров в аморфно-кристаллическом состоянии.
- •3.Компаундирование.
- •Понятие о пластмассах. Норпласты.
- •Полиморфизм днк.
- •Теломеризация.
- •Анизотропия механических свойств полимеров.
- •Вторичная и третичная структура рнк.
- •Химические превращения полимеров, приводящие к изменению молекулярной массы полимера.
- •Композиционные материалы (композиты).
- •Нуклеосомы.
- •Механическая деструкция полимеров.
- •Термическая деструкция.
- •Наднуклеосомная укладка днк.
- •Сравнение процессов полимеризации и поликонденсации.
- •1.Фотохимическая деструкция.
- •Белок-белковые взаимодействия. Примеры.
- •Каландрование.
- •Радиационная и ультразвуковая деструкция полимеров.
- •Типы белок-белковых взаимодействий.
Суспензионная полимеризация.
При полимеризации в суспензии мономер диспергируют в воде в виде мелких капель. Устойчивость дисперсии достигается механическим перемешиванием и введением в реакционную систему специальных добавок – стабилизаторов. Ими могут быть гидрофильные полимеры, такие как поливиниловый спирт, полиакриловая кислота, крахмал, а также оксид алюминия, тальк, тонкодисперсная глина. Стабилизаторы, которые применяют в сравнительно больших концентрациях (3-5%), адсорбируются на поверхности капель, образующихся при перемешивании, и препятствуют их слиянию. Капли относительно большие. Их диаметр колеблется от 0,1 до 5 мм в зависимости от условий перемешивания, природы и количества стабилизатора.
БИЛЕТ №19
Механические свойства полимеров в аморфно-кристаллическом состоянии.
Механические свойства полимеров в аморфно-кристаллическом состоянии определяются тем, что в этом состоянии полимеры представляют собой своеобразные микроконструкции, состоящие из связанных между собой элементов с различными механическими характеристиками. Различные области полимера деформируются по-разному, а в пределах одной области разные макромолекулы напряжены и деформированы также различно. Физические методы позволяют установить особенности реакции отдельных структурных элементов на механическое воздействие. Исследование смещения рефлексов на широкоугловых рентгенограммах кристаллических полимеров при их растяжении позволило рассчитать величины деформации и модули Юнга кристаллических участков. Рассчитанные модули для всех полимеров превышали модули Юнга, определенные по механическим испытаниям. При небольших напряжениях и деформациях благодаря существенному вкладу в общую деформацию деформации аморфных областей, механические свойства аморфно-кристаллических полимеров имеют сходство с механическими свойствами аморфных полимеров. При повышении температуры происходит уменьшение модуля Юнга ( физическая величина, характеризующая свойства материала сопротивляться растяжению, сжатию при упругой деформации), причем при переходе через температуру стеклования аморфных участков иногда наблюдается падение модуля, однако не на 4—5, как в случае аморфных полимеров, а всего на 1 — 2 порядка.
2.Z-ДНК.
Z-ДНК- это единственная известная левая спираль. Z-форма относится к каноническим структурам, потому что цепи в ней ориентированы антипараллельно, а основания связаны уотсон-криковскими водородными связями. Z-Форма наблюдается только для полинуклеотидов с чередующейся гуанин-пиримидиновой последовательностью при высокой концентрации солей. Ее биологическая функция до сих пор не установлена. Если А- и В-ДНК являются регулярными полинуклеотидами - единица повторяемости — мононуклеотид, то Z‑форма — бирегулярна - единица повторяемости — динуклеотид. Конформация нуклеозидов в этом динуклеотиде существенно различна. Варьирует и угол спирального вращения. Если для CpG‑контакта угол спирального вращения близок 0°, то для GpC-контакта — к 60°. Это приводит к зигзагообразному ходу сахаро-фосфатного остова. Именно из-за этой особенности строения структуру назвали Z-формой. Пары оснований почти перпендикулярны оси спирали. Из всех канонических структур Z-форма самая «длинная». Длина фрагмента из 10 пар оснований ~37 нм. У Z‑формы только один малый желобок.
