- •44.03.05 Педагогическое образование
- •Информатика. Теоретические основы информатики.
- •Информатика как наука. Информация, свойства информации. Представление информации. Информационные процессы. Методика.
- •Методика обучения данной теме в школьном курсе информатики.
- •Основные этапы в информационном развитии общества. Основные черты информационного общества. Информатизация. Информационные технологии и этапы их развития. Методика.
- •Методика обучения данной темы в школьном курсе информатики.
- •Информация. Содержательный и алфавитный подходы к измерению информации. Основные единицы измерения информации. Методика.
- •Методика обучения данной темы в школьном курсе информатики.
- •Системы счисления. Перевод из одной системы счисления в другую. Операции в различных системах счисления. Связь между 2-, 8-, 16-теричными системами счисления. Методика.
- •1) Понятие системы счисления
- •2) Непозиционные системы счисления
- •1) Позиционные системы счисления
- •4) Перевод из одной системы счисления в другую
- •1. Перевод целого числа из любой системы счисления в десятичную.
- •2. Перевод целого числа из десятичной системы в любую систему счисления
- •5) Операции в различных системах счисления
- •6) Связь между 2-,8-,16-теричными системами счисления
- •Методика обучения данной темы в школьном курсе информатики.
- •Кодирование информации. Кодирование числовой информации. Кодирование текстовой и графической информации. Кодирование звуковой и видеоинформации. Методика.
- •Методика обучения теме «Кодирование информации» в школе
- •2. Умк Семакина и.Г. (7-9) наиболее приемлем для рассмотрения данной темы.
- •Старшая школа
- •Защита информации: архивирование (метод Хаффмана, метод Шеннона-Фана); криптография; аутентификация.
- •1. Архивирование
- •2. Криптографические коды.
- •Алгоритм. Свойства алгоритма. Способы записи алгоритмов. Базовые алгоритмические структуры. Методика.
- •Процедурное программирование. Язык программирования «Паскаль»: элементы языка, организация данных, обработка данных. Методика.
- •Обработка данных.
- •Методика обучения данной темы в школьном курсе информатики.
- •Объектно-ориентированное программирование. Статическая структура системы: объекты; классы; свойства объектов (инкапсуляция, наследование и полиморфизм). Методика.
- •Методика обучения данной теме в школьном курсе информатики
- •Основы логики. Основные логические операции. Логические выражения и таблицы истинности. Логические законы. Методика. Основы логики
- •Основные логические операции
- •Логические выражения и таблицы истинности.
- •1) Логическое умножение или конъюнкция:
- •Логические законы
- •Моделирование как метод познания. Классификация и формы представления моделей. Основные этапы разработки и исследования моделей на компьютере. Методика.
- •Основные направления исследований в области искусственного интеллекта. Классические задачи ии. Система знаний. Модули представления знаний: логическая, сетевая, фреймовая, продукционная.
- •Модули представления знаний
- •Логическая модель представления знаний
- •Сетевая модель представления знаний
- •Фреймовая модель представления знаний
- •Продукционная модель представления знаний
- •Архитектура компьютера
- •История развития вычислительной техники. Характеристика основных этапов ее развития. Поколения эвм. Архитектурные особенности современных компьютеров. Методика.
- •Характеристика основных этапов ее развития.
- •Архитектурные особенности современных компьютеров:
- •Логические основы компьютера. Базовые логические элементы. Сумматор двоичных чисел. Триггер. Методика.
- •Переключательные схемы
- •Вентили, триггеры и сумматоры
- •Полусумматор
- •Сумматор
- •Устройство компьютера: центральный процессор, внутренняя и внешняя память, системная плата. Способы передачи информации в компьютерных линях связи.
- •Параметры процессоров
- •Последовательная передача данных.
- •Программное обеспечение
- •Программное обеспечение эвм: характеристика и классификация; развитие и основные функции ос. Методика обучения данной теме в школьном курсе информатики.
- •Методика обучения данной теме в школьном курсе информатики.
- •Основные возможности Word:
- •Форматирование и редактирование.
- •Создание макросов в word.
- •Управление печатью.
- •Методические особенности обучения теме «Текстовая информация и компьютер» в школьном курсе информатики (кодирование символьной информации; принципы работы с текстовыми редакторами).
- •Виды систем компьютерной графики: основные характеристики, основы работы в конкретном редакторе. Типы графических файлов. Методика.
- •Векторная графика.
- •Основы работы в векторном графическом редакторе Corel Draw.
- •Интерфейс
- •Создание простых фигур
- •Основы работы в фрактальном графическом редакторе Corel Painter.
- •Типы графических файлов.
- •Методика обучения темы «Компьютерная графика» в школьном курсе информатики.
- •Основы работы в ms Excel:
- •Создание таблиц.
- •Проведение математических расчетов.
- •1) Правила написания формул:
- •2) Способы ввода формул.
- •Решение уравнений.
- •Линейная алгебра.
- •Мат.Анализ.
- •Программирование
- •Информационные системы
- •Модели «сущность-связь»
- •Семантические модели
- •Введение в sql. Создание, изменение и удаление таблиц. Выборка данных из таблиц. Создание sql-запросов. Обработка данных в sql. Методика.
- •Раздел 4 Информационные системы
- •Компьютерные сети
- •Классификация компьютерных сетей. Локальные сети: характеристика, топология. Методика.
- •3. Адресация в сети Интернет.
- •4. Технология электронной почты.
- •5. Технология обмена файлами (ftp).
- •6. Технология www.
- •7. Поиск информации в Интернете.
- •7. Методика обучения данной теме в школьном курсе информатики.
- •Язык html как средство создания информационных ресурсов Интернет. Методика.
- •Методика
- •Математика. Алгебра и теория чисел.
- •Система натуральных чисел. Аксиомы Пеано. Простые и составные числа. Свойства. Методика.
- •Методика изучения натуральных чисел в школе.
- •Кольцо целых чисел. Теорема о делении с остатком. Нок и нод чисел. Методика.
- •Методика изучения целых чисел в школе.
- •Поле рациональных чисел. Методика.
- •Методика изучения рациональных чисел в школе.
- •Система действительных чисел. Упорядоченное поле. Методика.
- •Поле комплексных чисел. Действия над комплексными числами. Методы.
- •Методика.
- •Системы линейных уравнений. Метод Гаусса. Свойства решений. Методика.
- •Основная теорема алгебры и ее следствия. Методика.
- •Методика изучения квадратных уравнений в школе.
- •Геометрия
- •Скалярное произведение векторов. Методика изучения векторов в основной школе.
- •Методика изучения векторов в основной школе.
- •Векторное произведение векторов. Различные подходы к введению понятия вектора в основной школе.
- •Смешанное произведение векторов. Методика обучения решению задач с помощью векторов.
- •Методика обучения решению задач с помощью векторов в школьном курсе геометрии.
- •Взаимное расположение двух прямых.
- •Расстояние от точки до прямой.
- •Угол между двумя прямыми.
- •Роль координатного метода в основной школе.
- •Методика изучения темы: «Перпендикулярность прямых и плоскостей» в школьном курсе геометрии.
- •Движения плоскости. Классификация движений. Группа движений и ее подгруппы. Обучение решению задач с помощью геометрических преобразований.
- •Преобразования подобия плоскости. Группа преобразований и ее подгруппы. Основные вопросы методики изучения преобразования фигур.
- •Аффинные преобразования плоскости. Группа аффинных преобразований и ее подгруппы. Различные подходы к введению понятия преобразования фигур в основной школе.
- •Аксиоматическое построение геометрии (аксиоматика Вейля и школьного курса геометрии). Логические основы изучения геометрии в 7-9 классах.
- •Плоскость Лобачевского. Модель Кэли-Клейна. Цели и задачи курса геометрии основной школы.
- •Изображение плоских и пространственных фигур в параллельной проекции. Методика изучения тел вращения в школьном курсе геометрии.
- •Методика изучения тел вращения в школьном курсе геометрии.
- •Многоугольники. Площадь многоугольника. Теорема существования и единственности. Равновеликость и равносоставленность. Методика изучения правильных многоугольников в основной школе.
- •Геометрические построения на плоскости (аксиоматика, схема решения задач, основные построения, признак разрешимости задач, методы геометрических построений). Методика.
- •Математический анализ
- •Отображения множеств (функции). Предел и непрерывность функции в точке. Методика введения понятия «функция» в школьном курсе математики.
- •Методика введения понятия функция
- •Свойства функций, непрерывных на отрезке.
- •Методика:
- •Степенная функция. Степень в комплексной области. Методика изучения степенной функции в школьном курсе математики.
- •Логарифмическая функция, ее основные свойства. Разложение в степенной ряд. Логарифмическая функция комплексного переменного. Методика изучения логарифмической функции.
- •Функция косинус
- •Функция тангенс
- •Функция котангенс
- •Дифференцируемые функции одной переменной. Геометрический и механический смысл производной. Правила дифференцирования. Методика введения понятия производная в школьном курсе математики.
- •Определенный интеграл. Интегрирование непрерывной функции. Формула Ньютона-Лейбница. Методика введения понятия «интеграл» в школьном курсе математики.
- •Числовые ряды. Признаки сходимости рядов с положительными членами. Знакопеременные ряды.
Информация. Содержательный и алфавитный подходы к измерению информации. Основные единицы измерения информации. Методика.
Информация для человека — это знания, которые он получает из различных источников.
А.Н. Колмогоров(алфавитный подход): информация — это содержание последовательностей символов (сигналов) из некоторого алфавита.
Содержательный подход к измерению информации: Сообщение – информативный поток, который в процессе передачи информации поступает к приемнику. Сообщение несет информацию для человека, если содержащиеся в нем сведения являются для него новыми и понятными. Информация - знания человека? сообщение должно быть информативно. Если сообщение не информативно, то количество информации с точки зрения человека = 0. (Пример: вузовский учебник по высшей математике содержит знания, но они не доступны 1-класснику).
Согласно Шеннону, информативность сообщения характеризуется содержащейся в нем полезной информацией – той частью сообщения, которая снимает полностью или уменьшает неопределенность какой-либо ситуации.
Неопределенность некоторого события – это количество возможных исходов данного события. Так, например, если из колоды карт наугад выбирают карту, то неопределенность равна количеству карт в колоде. При бросании монеты неопределенность равна 2.
Содержательный подход часто называют субъективным, так как разные люди информацию об одном и том же предмете оценивают по-разному.
Но если число исходов не зависит от суждений людей (случай бросания кубика или монеты), то информация о наступлении одного из возможных исходов является объективной.
Если сообщение уменьшило неопределенность знаний ровно в два раза, то говорят, что сообщение несет 1 бит информации.1 бит - объем информации такого сообщения, которое уменьшает неопределенность знания в два раза.
Пусть в некотором сообщении содержатся сведения о том, что произошло одно из N равновероятных событий. Тогда количество информации d, заключенное в этом сообщении, и число событий N связаны формулой: 2d = N. Эта формула носит название формулы Хартли.
Формула Хартли: H = k logаN, где k – коэффициент пропорциональности, а – основание системы меры. Формула Хартли не работает в случае различных состояний системы.
Пусть известны N состояний системы S, которые необходимо закодировать двоичным кодом. Вопрос: какой длины должен быть код? Число всех различных комбинаций из {0,1} длины d должно быть не меньше, чем N, т.е. 2d≥N.
Прологарифмируем это неравенство: log22d ≥ log2N ⇒ d ≥ log2N. Наименьшее решение этого неравенства называется мерой разнообразия множества состояний системы и задается формулой Хартли для двоичной системы счисления: H = log2N (бит).
Модифицированная формула Хартли для неравновероятностных событий. Так как наступление каждого из N возможных событий имеет одинаковую вероятность p = 1 / N, то N = 1 / p и формула имеет вид : I = log2N= log2 (1/p) = - log2 p
Количественная зависимость между вероятностью события (p) и количеством информации в сообщении о нем (I) выражается формулой: I = log2(1/p)
Вероятность события вычисляется по формуле p=K/N, K – величина, показывающая, сколько раз произошло интересующее нас событие; N – общее число возможных исходов, событий. Если вероятность уменьшается, то количество информации увеличивается.
Алфавитный подход к измерению информации: Алфавитный подход основан на том, что всякое сообщение можно закодировать с помощью конечной последовательности символов некоторого алфавита.
Алфавит – упорядоченный набор символов, используемый для кодирования сообщений на некотором языке. Мощность алфавита – количество символов алфавита. Двоичный алфавит содержит 2 символа, его мощность равна двум. Сообщения, записанные с помощью символов ASCII, используют алфавит из 256 символов. Сообщения, записанные по системе UNICODE, используют алфавит из 65 536 символов.
С позиций computerscience носителями информации являются любые последовательности символов, которые хранятся, передаются и обрабатываются с помощью компьютера. Согласно Колмогорову, информативность последовательности символов не зависит от содержания сообщения, алфавитный подход является объективным, т.е. он не зависит от субъекта, воспринимающего сообщение. Чтобы определить объем информации в сообщении при алфавитном подходе, нужно последовательно решить задачи: Определить количество информации (d) в одном символе по формуле 2d = N, где N - мощность алфавита.Определить количество символов в сообщении (m) Вычислить объем информации по формуле: V = d × m.
Все события происходят с различной вероятностью, но зависимость между вероятностью событий и количеством информации. Шеннон предложил связать количество информации в сообщении с вероятностью получения этого сообщения.
Вероятность – это количественная характеристика одного из исходов некоторого опыта, известная до его проведения. Измеряется в пределах от 0 до 1.
Теория Шеннона разработана как теория передачи данных по каналам связи, а мера Шеннона – как мера количества данных и не отражает семантического смысла.
Формула
Шеннона
дает оценку информации независимо от
ее смысла:
где n – число состояний системы; рi – вероятность (относительная частота) перехода системы в i-е состояние (сумма всех pi равна 1).
Основные единицы измерения информации
Любая информация в компьютере представляется с помощью двоичных цифр.
Наименьшей единицей информации является бит.
Согласно содержательному подходу один бит – это такое количество информации, которое уменьшает неопределенность в два раза.
При алфавитном подходе один бит – это количество информации, которое можно передать сообщением из одного двоичного значка, то есть «0» или «1».
1 бит — это исходная единица. Следующая по величине единица — байт. Байт вводится как информационный вес символа из алфавита мощностью 256. Поскольку 256 = 28, то 1 байт = 8 бит.
Единицы измерения информации:
1байт = 8 бит
1Кб (килобайт) = 210 байт = 1024 байт
1Мб (мегабайт) = 210 Кб = 1024 Кб
1Гб (гигабайт) = 210 Мб = 1024 Мб
