- •44.03.05 Педагогическое образование
- •Информатика. Теоретические основы информатики.
- •Информатика как наука. Информация, свойства информации. Представление информации. Информационные процессы. Методика.
- •Методика обучения данной теме в школьном курсе информатики.
- •Основные этапы в информационном развитии общества. Основные черты информационного общества. Информатизация. Информационные технологии и этапы их развития. Методика.
- •Методика обучения данной темы в школьном курсе информатики.
- •Информация. Содержательный и алфавитный подходы к измерению информации. Основные единицы измерения информации. Методика.
- •Методика обучения данной темы в школьном курсе информатики.
- •Системы счисления. Перевод из одной системы счисления в другую. Операции в различных системах счисления. Связь между 2-, 8-, 16-теричными системами счисления. Методика.
- •1) Понятие системы счисления
- •2) Непозиционные системы счисления
- •1) Позиционные системы счисления
- •4) Перевод из одной системы счисления в другую
- •1. Перевод целого числа из любой системы счисления в десятичную.
- •2. Перевод целого числа из десятичной системы в любую систему счисления
- •5) Операции в различных системах счисления
- •6) Связь между 2-,8-,16-теричными системами счисления
- •Методика обучения данной темы в школьном курсе информатики.
- •Кодирование информации. Кодирование числовой информации. Кодирование текстовой и графической информации. Кодирование звуковой и видеоинформации. Методика.
- •Методика обучения теме «Кодирование информации» в школе
- •2. Умк Семакина и.Г. (7-9) наиболее приемлем для рассмотрения данной темы.
- •Старшая школа
- •Защита информации: архивирование (метод Хаффмана, метод Шеннона-Фана); криптография; аутентификация.
- •1. Архивирование
- •2. Криптографические коды.
- •Алгоритм. Свойства алгоритма. Способы записи алгоритмов. Базовые алгоритмические структуры. Методика.
- •Процедурное программирование. Язык программирования «Паскаль»: элементы языка, организация данных, обработка данных. Методика.
- •Обработка данных.
- •Методика обучения данной темы в школьном курсе информатики.
- •Объектно-ориентированное программирование. Статическая структура системы: объекты; классы; свойства объектов (инкапсуляция, наследование и полиморфизм). Методика.
- •Методика обучения данной теме в школьном курсе информатики
- •Основы логики. Основные логические операции. Логические выражения и таблицы истинности. Логические законы. Методика. Основы логики
- •Основные логические операции
- •Логические выражения и таблицы истинности.
- •1) Логическое умножение или конъюнкция:
- •Логические законы
- •Моделирование как метод познания. Классификация и формы представления моделей. Основные этапы разработки и исследования моделей на компьютере. Методика.
- •Основные направления исследований в области искусственного интеллекта. Классические задачи ии. Система знаний. Модули представления знаний: логическая, сетевая, фреймовая, продукционная.
- •Модули представления знаний
- •Логическая модель представления знаний
- •Сетевая модель представления знаний
- •Фреймовая модель представления знаний
- •Продукционная модель представления знаний
- •Архитектура компьютера
- •История развития вычислительной техники. Характеристика основных этапов ее развития. Поколения эвм. Архитектурные особенности современных компьютеров. Методика.
- •Характеристика основных этапов ее развития.
- •Архитектурные особенности современных компьютеров:
- •Логические основы компьютера. Базовые логические элементы. Сумматор двоичных чисел. Триггер. Методика.
- •Переключательные схемы
- •Вентили, триггеры и сумматоры
- •Полусумматор
- •Сумматор
- •Устройство компьютера: центральный процессор, внутренняя и внешняя память, системная плата. Способы передачи информации в компьютерных линях связи.
- •Параметры процессоров
- •Последовательная передача данных.
- •Программное обеспечение
- •Программное обеспечение эвм: характеристика и классификация; развитие и основные функции ос. Методика обучения данной теме в школьном курсе информатики.
- •Методика обучения данной теме в школьном курсе информатики.
- •Основные возможности Word:
- •Форматирование и редактирование.
- •Создание макросов в word.
- •Управление печатью.
- •Методические особенности обучения теме «Текстовая информация и компьютер» в школьном курсе информатики (кодирование символьной информации; принципы работы с текстовыми редакторами).
- •Виды систем компьютерной графики: основные характеристики, основы работы в конкретном редакторе. Типы графических файлов. Методика.
- •Векторная графика.
- •Основы работы в векторном графическом редакторе Corel Draw.
- •Интерфейс
- •Создание простых фигур
- •Основы работы в фрактальном графическом редакторе Corel Painter.
- •Типы графических файлов.
- •Методика обучения темы «Компьютерная графика» в школьном курсе информатики.
- •Основы работы в ms Excel:
- •Создание таблиц.
- •Проведение математических расчетов.
- •1) Правила написания формул:
- •2) Способы ввода формул.
- •Решение уравнений.
- •Линейная алгебра.
- •Мат.Анализ.
- •Программирование
- •Информационные системы
- •Модели «сущность-связь»
- •Семантические модели
- •Введение в sql. Создание, изменение и удаление таблиц. Выборка данных из таблиц. Создание sql-запросов. Обработка данных в sql. Методика.
- •Раздел 4 Информационные системы
- •Компьютерные сети
- •Классификация компьютерных сетей. Локальные сети: характеристика, топология. Методика.
- •3. Адресация в сети Интернет.
- •4. Технология электронной почты.
- •5. Технология обмена файлами (ftp).
- •6. Технология www.
- •7. Поиск информации в Интернете.
- •7. Методика обучения данной теме в школьном курсе информатики.
- •Язык html как средство создания информационных ресурсов Интернет. Методика.
- •Методика
- •Математика. Алгебра и теория чисел.
- •Система натуральных чисел. Аксиомы Пеано. Простые и составные числа. Свойства. Методика.
- •Методика изучения натуральных чисел в школе.
- •Кольцо целых чисел. Теорема о делении с остатком. Нок и нод чисел. Методика.
- •Методика изучения целых чисел в школе.
- •Поле рациональных чисел. Методика.
- •Методика изучения рациональных чисел в школе.
- •Система действительных чисел. Упорядоченное поле. Методика.
- •Поле комплексных чисел. Действия над комплексными числами. Методы.
- •Методика.
- •Системы линейных уравнений. Метод Гаусса. Свойства решений. Методика.
- •Основная теорема алгебры и ее следствия. Методика.
- •Методика изучения квадратных уравнений в школе.
- •Геометрия
- •Скалярное произведение векторов. Методика изучения векторов в основной школе.
- •Методика изучения векторов в основной школе.
- •Векторное произведение векторов. Различные подходы к введению понятия вектора в основной школе.
- •Смешанное произведение векторов. Методика обучения решению задач с помощью векторов.
- •Методика обучения решению задач с помощью векторов в школьном курсе геометрии.
- •Взаимное расположение двух прямых.
- •Расстояние от точки до прямой.
- •Угол между двумя прямыми.
- •Роль координатного метода в основной школе.
- •Методика изучения темы: «Перпендикулярность прямых и плоскостей» в школьном курсе геометрии.
- •Движения плоскости. Классификация движений. Группа движений и ее подгруппы. Обучение решению задач с помощью геометрических преобразований.
- •Преобразования подобия плоскости. Группа преобразований и ее подгруппы. Основные вопросы методики изучения преобразования фигур.
- •Аффинные преобразования плоскости. Группа аффинных преобразований и ее подгруппы. Различные подходы к введению понятия преобразования фигур в основной школе.
- •Аксиоматическое построение геометрии (аксиоматика Вейля и школьного курса геометрии). Логические основы изучения геометрии в 7-9 классах.
- •Плоскость Лобачевского. Модель Кэли-Клейна. Цели и задачи курса геометрии основной школы.
- •Изображение плоских и пространственных фигур в параллельной проекции. Методика изучения тел вращения в школьном курсе геометрии.
- •Методика изучения тел вращения в школьном курсе геометрии.
- •Многоугольники. Площадь многоугольника. Теорема существования и единственности. Равновеликость и равносоставленность. Методика изучения правильных многоугольников в основной школе.
- •Геометрические построения на плоскости (аксиоматика, схема решения задач, основные построения, признак разрешимости задач, методы геометрических построений). Методика.
- •Математический анализ
- •Отображения множеств (функции). Предел и непрерывность функции в точке. Методика введения понятия «функция» в школьном курсе математики.
- •Методика введения понятия функция
- •Свойства функций, непрерывных на отрезке.
- •Методика:
- •Степенная функция. Степень в комплексной области. Методика изучения степенной функции в школьном курсе математики.
- •Логарифмическая функция, ее основные свойства. Разложение в степенной ряд. Логарифмическая функция комплексного переменного. Методика изучения логарифмической функции.
- •Функция косинус
- •Функция тангенс
- •Функция котангенс
- •Дифференцируемые функции одной переменной. Геометрический и механический смысл производной. Правила дифференцирования. Методика введения понятия производная в школьном курсе математики.
- •Определенный интеграл. Интегрирование непрерывной функции. Формула Ньютона-Лейбница. Методика введения понятия «интеграл» в школьном курсе математики.
- •Числовые ряды. Признаки сходимости рядов с положительными членами. Знакопеременные ряды.
Параметры процессоров
Процессоры можно классифицировать по двум основным параметрам: разрядности и быстродействию. Быстродействие процессора – довольно простой параметр. Оно измеряется в мегагерцах (МГц); 1 МГц равен миллиону тактов в секунду. Чем выше быстродействие, тем лучше (тем быстрее процессор). Разрядность процессора – параметр более сложный. В процессор входит три важных устройства, основной характеристикой которых является разрядность:
- шина ввода и вывода данных;
- внутренние регистры;
- шина адреса памяти.
Шина данных. Чем больше сигналов одновременно поступает на шину, тем больше данных передается по ней за определенный интервал времени и тем быстрее она работает.
Данные в компьютере передаются в виде цифр через одинаковые промежутки времени. Для передачи единичного бита данных в определенный временной интервал посылается сигнал напряжения высокого уровня (около 5 В), а для передачи нулевого бита данных – сигнал напряжения низкого уровня (около 0 В). Чем больше линий, тем больше битов можно передать за одно и то же время. Современные процессоры могут передавать одновременно 64 бит данных. Разрядность шины данных процессора определяет также разрядность банка памяти.
Шина адреса. Шина адреса представляет собой набор проводников; по ним передается адрес ячейки памяти, в которую или из которой пересылаются данные. Как и в шине данных, по каждому проводнику передается один бит адреса, соответствующий одной цифре в адресе. Увеличение количества проводников (разрядов), используемых для формирования адреса, максимальный объем памяти, адресуемой процессором.
В компьютерах применяется двоичная система счисления, поэтому при двухразрядной адресации можно выбрать только четыре ячейки (с адресами 00, 01, 10 и 11), т. е. 22, при трехразрядной – восемь (от 000 до 111), т. е. 23.
Шина управления – компьютерная шина, по которой передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления определяют, какую операцию нужно производить, синхронизируют обмен информацией между устройствами. В ШУ условно объединяют набор линий, передающих различные управляющие сигналы от процессора на все периферийные устройства и обратно.
Внутренняя (основная) память - это запоминающее устройство, которое напрямую связано с процессором и предназначено для хранения выполняемых программ и данных, непосредственно участвующих в вычислениях. Внутренняя память делится на оперативную (ОЗУ) и постоянную (ПЗУ). Оперативная память служит для приема, хранения и выдачи информации. Постоянная память обеспечивает хранение и выдачу информации.
Внешня память (ВЗУ) - это устройство, предназначенное для размещения больших объемов информации и обмена ею с оперативной памятью. Внешние запоминающие устройства конструктивно отделены от центральных устройств ПК.
Системная плата
В современную системную плату встроены такие компоненты, как гнезда процессоров, разъемы и микросхемы. Самые современные системные платы содержат следующие компоненты:
- гнездо для процессора;
- набор микросхем системной логики (компоненты North/South Bridge или Hub);
- микросхема Super I/O;
- базовая система ввода-вывода (ROM BIOS);
- гнезда модулей памяти SIMM/DIMM/RIMM;
- разъемы шин ISA/PCI/AGP;
- разъем AMR (Audio Modem Riser);
- разъем CNR (Communications and Networking Riser);
- преобразователь напряжения для центрального процессора;
- батарея.
В последнее время системные платы включают в себя интегрированные аудио- и видеоадаптеры, сетевой и SCSI-интерфейс, разъемы AMR (Audio Modem Riser) и CNR (Communications and Networking Riser), а также другие элементы, в зависимости от типа системной платы.
Набор микросхем управляет интерфейсом или соединениями процессора с различными компонентами компьютера. Поэтому он определяет в конечном счете тип и быстродействие используемого процессора, рабочую частоту шины, скорость, тип и объем памяти. В сущности, набор микросхем относится к числу наиболее важных компонентов системы, даже, наверное, более важных, чем процессор. По номеру на большей микросхеме системной платы можно идентифицировать набор микросхем системной логики.
Способы передачи информации в компьютерных линиях связи.
В компьютерных линиях связи используются два способа передачи:
1) параллельный, когда пересекаются одновременно все биты машинного слова;
2) последовательный, когда биты передаются поочерёдно, начиная с младшего.
Параллельная передача данных.
Для одновременной передачи нескольких сигналов требуется линия связи, количество проводников в которой совпадает с числом передаваемых сигналов. Такая линия называется шиной. Количество проводников определяет ширину или разрядность шины. Например, во внутренних линиях компьютера могут использоваться 16-ти и 32-х разрядные шины. На рис. показана линия параллельной передачи, связывающая регистр АЛУ и ячейку памяти компьютера.
Шина
обеспечивает наиболее быстрый способ
передачи информации, поскольку за два
такта синхрогенератора компьютера
передается целое машинное слово. В общем
случае, если
-
частота генератора, h
- разрядность шины, а n
- число тактов, за которые осуществляется
передача, то согласно и пропускная
способность канала параллельной передачи
С будет равна:
Параллельный способ передачи используется во внутренних линиях связи компьютера (на материнской плате; при обмене информацией с устройствами внешней памяти - магнитными дисками, CD-ROM), а также для связи с внешними устройствами, подключаемыми к параллельному порту компьютера (LPT-порту): принтером, плоттером (графопостроителем) и др. Данный способ использовался и при объединении компьютеров в локальные сети.
Недостатки параллельного способ передачи:
1) невозможна передача на большие расстояния (более нескольких метров), поскольку между параллельными проводниками имеется электроёмкость, увеличивающаяся с их длиной, существование которой приводит к тому, что при протекании импульса по какому-либо одному проводнику возникают наводки в других.
2) данный способ требует множительных специальных проводов для связи, что существенно повышает стоимость линии.
