- •44.03.05 Педагогическое образование
- •Информатика. Теоретические основы информатики.
- •Информатика как наука. Информация, свойства информации. Представление информации. Информационные процессы. Методика.
- •Методика обучения данной теме в школьном курсе информатики.
- •Основные этапы в информационном развитии общества. Основные черты информационного общества. Информатизация. Информационные технологии и этапы их развития. Методика.
- •Методика обучения данной темы в школьном курсе информатики.
- •Информация. Содержательный и алфавитный подходы к измерению информации. Основные единицы измерения информации. Методика.
- •Методика обучения данной темы в школьном курсе информатики.
- •Системы счисления. Перевод из одной системы счисления в другую. Операции в различных системах счисления. Связь между 2-, 8-, 16-теричными системами счисления. Методика.
- •1) Понятие системы счисления
- •2) Непозиционные системы счисления
- •1) Позиционные системы счисления
- •4) Перевод из одной системы счисления в другую
- •1. Перевод целого числа из любой системы счисления в десятичную.
- •2. Перевод целого числа из десятичной системы в любую систему счисления
- •5) Операции в различных системах счисления
- •6) Связь между 2-,8-,16-теричными системами счисления
- •Методика обучения данной темы в школьном курсе информатики.
- •Кодирование информации. Кодирование числовой информации. Кодирование текстовой и графической информации. Кодирование звуковой и видеоинформации. Методика.
- •Методика обучения теме «Кодирование информации» в школе
- •2. Умк Семакина и.Г. (7-9) наиболее приемлем для рассмотрения данной темы.
- •Старшая школа
- •Защита информации: архивирование (метод Хаффмана, метод Шеннона-Фана); криптография; аутентификация.
- •1. Архивирование
- •2. Криптографические коды.
- •Алгоритм. Свойства алгоритма. Способы записи алгоритмов. Базовые алгоритмические структуры. Методика.
- •Процедурное программирование. Язык программирования «Паскаль»: элементы языка, организация данных, обработка данных. Методика.
- •Обработка данных.
- •Методика обучения данной темы в школьном курсе информатики.
- •Объектно-ориентированное программирование. Статическая структура системы: объекты; классы; свойства объектов (инкапсуляция, наследование и полиморфизм). Методика.
- •Методика обучения данной теме в школьном курсе информатики
- •Основы логики. Основные логические операции. Логические выражения и таблицы истинности. Логические законы. Методика. Основы логики
- •Основные логические операции
- •Логические выражения и таблицы истинности.
- •1) Логическое умножение или конъюнкция:
- •Логические законы
- •Моделирование как метод познания. Классификация и формы представления моделей. Основные этапы разработки и исследования моделей на компьютере. Методика.
- •Основные направления исследований в области искусственного интеллекта. Классические задачи ии. Система знаний. Модули представления знаний: логическая, сетевая, фреймовая, продукционная.
- •Модули представления знаний
- •Логическая модель представления знаний
- •Сетевая модель представления знаний
- •Фреймовая модель представления знаний
- •Продукционная модель представления знаний
- •Архитектура компьютера
- •История развития вычислительной техники. Характеристика основных этапов ее развития. Поколения эвм. Архитектурные особенности современных компьютеров. Методика.
- •Характеристика основных этапов ее развития.
- •Архитектурные особенности современных компьютеров:
- •Логические основы компьютера. Базовые логические элементы. Сумматор двоичных чисел. Триггер. Методика.
- •Переключательные схемы
- •Вентили, триггеры и сумматоры
- •Полусумматор
- •Сумматор
- •Устройство компьютера: центральный процессор, внутренняя и внешняя память, системная плата. Способы передачи информации в компьютерных линях связи.
- •Параметры процессоров
- •Последовательная передача данных.
- •Программное обеспечение
- •Программное обеспечение эвм: характеристика и классификация; развитие и основные функции ос. Методика обучения данной теме в школьном курсе информатики.
- •Методика обучения данной теме в школьном курсе информатики.
- •Основные возможности Word:
- •Форматирование и редактирование.
- •Создание макросов в word.
- •Управление печатью.
- •Методические особенности обучения теме «Текстовая информация и компьютер» в школьном курсе информатики (кодирование символьной информации; принципы работы с текстовыми редакторами).
- •Виды систем компьютерной графики: основные характеристики, основы работы в конкретном редакторе. Типы графических файлов. Методика.
- •Векторная графика.
- •Основы работы в векторном графическом редакторе Corel Draw.
- •Интерфейс
- •Создание простых фигур
- •Основы работы в фрактальном графическом редакторе Corel Painter.
- •Типы графических файлов.
- •Методика обучения темы «Компьютерная графика» в школьном курсе информатики.
- •Основы работы в ms Excel:
- •Создание таблиц.
- •Проведение математических расчетов.
- •1) Правила написания формул:
- •2) Способы ввода формул.
- •Решение уравнений.
- •Линейная алгебра.
- •Мат.Анализ.
- •Программирование
- •Информационные системы
- •Модели «сущность-связь»
- •Семантические модели
- •Введение в sql. Создание, изменение и удаление таблиц. Выборка данных из таблиц. Создание sql-запросов. Обработка данных в sql. Методика.
- •Раздел 4 Информационные системы
- •Компьютерные сети
- •Классификация компьютерных сетей. Локальные сети: характеристика, топология. Методика.
- •3. Адресация в сети Интернет.
- •4. Технология электронной почты.
- •5. Технология обмена файлами (ftp).
- •6. Технология www.
- •7. Поиск информации в Интернете.
- •7. Методика обучения данной теме в школьном курсе информатики.
- •Язык html как средство создания информационных ресурсов Интернет. Методика.
- •Методика
- •Математика. Алгебра и теория чисел.
- •Система натуральных чисел. Аксиомы Пеано. Простые и составные числа. Свойства. Методика.
- •Методика изучения натуральных чисел в школе.
- •Кольцо целых чисел. Теорема о делении с остатком. Нок и нод чисел. Методика.
- •Методика изучения целых чисел в школе.
- •Поле рациональных чисел. Методика.
- •Методика изучения рациональных чисел в школе.
- •Система действительных чисел. Упорядоченное поле. Методика.
- •Поле комплексных чисел. Действия над комплексными числами. Методы.
- •Методика.
- •Системы линейных уравнений. Метод Гаусса. Свойства решений. Методика.
- •Основная теорема алгебры и ее следствия. Методика.
- •Методика изучения квадратных уравнений в школе.
- •Геометрия
- •Скалярное произведение векторов. Методика изучения векторов в основной школе.
- •Методика изучения векторов в основной школе.
- •Векторное произведение векторов. Различные подходы к введению понятия вектора в основной школе.
- •Смешанное произведение векторов. Методика обучения решению задач с помощью векторов.
- •Методика обучения решению задач с помощью векторов в школьном курсе геометрии.
- •Взаимное расположение двух прямых.
- •Расстояние от точки до прямой.
- •Угол между двумя прямыми.
- •Роль координатного метода в основной школе.
- •Методика изучения темы: «Перпендикулярность прямых и плоскостей» в школьном курсе геометрии.
- •Движения плоскости. Классификация движений. Группа движений и ее подгруппы. Обучение решению задач с помощью геометрических преобразований.
- •Преобразования подобия плоскости. Группа преобразований и ее подгруппы. Основные вопросы методики изучения преобразования фигур.
- •Аффинные преобразования плоскости. Группа аффинных преобразований и ее подгруппы. Различные подходы к введению понятия преобразования фигур в основной школе.
- •Аксиоматическое построение геометрии (аксиоматика Вейля и школьного курса геометрии). Логические основы изучения геометрии в 7-9 классах.
- •Плоскость Лобачевского. Модель Кэли-Клейна. Цели и задачи курса геометрии основной школы.
- •Изображение плоских и пространственных фигур в параллельной проекции. Методика изучения тел вращения в школьном курсе геометрии.
- •Методика изучения тел вращения в школьном курсе геометрии.
- •Многоугольники. Площадь многоугольника. Теорема существования и единственности. Равновеликость и равносоставленность. Методика изучения правильных многоугольников в основной школе.
- •Геометрические построения на плоскости (аксиоматика, схема решения задач, основные построения, признак разрешимости задач, методы геометрических построений). Методика.
- •Математический анализ
- •Отображения множеств (функции). Предел и непрерывность функции в точке. Методика введения понятия «функция» в школьном курсе математики.
- •Методика введения понятия функция
- •Свойства функций, непрерывных на отрезке.
- •Методика:
- •Степенная функция. Степень в комплексной области. Методика изучения степенной функции в школьном курсе математики.
- •Логарифмическая функция, ее основные свойства. Разложение в степенной ряд. Логарифмическая функция комплексного переменного. Методика изучения логарифмической функции.
- •Функция косинус
- •Функция тангенс
- •Функция котангенс
- •Дифференцируемые функции одной переменной. Геометрический и механический смысл производной. Правила дифференцирования. Методика введения понятия производная в школьном курсе математики.
- •Определенный интеграл. Интегрирование непрерывной функции. Формула Ньютона-Лейбница. Методика введения понятия «интеграл» в школьном курсе математики.
- •Числовые ряды. Признаки сходимости рядов с положительными членами. Знакопеременные ряды.
Логические основы компьютера. Базовые логические элементы. Сумматор двоичных чисел. Триггер. Методика.
Логические основы компьютераВ ЭВМ используются различные устройства, работу которых прекрасно описывает алгебра логики. К таким устройствам относятся группы переключателей, триггеры, сумматоры.Кроме того, связь между булевой алгеброй и компьютерами лежит и в используемой в ЭВМ системе счисления. Как известно она двоичная. Поэтому в устройствах компьютера можно хранить и преобразовывать как числа, так и значения логических переменных.
Переключательные схемы
В ЭВМ применяются электрические схемы, состоящие из множества переключателей. Переключатель может находиться только в двух состояниях: замкнутом и разомкнутом. В первом случае – ток проходит, во втором – нет. Описывать работу таких схем очень удобно с помощью алгебры логики. В зависимости от положения переключателей можно получить или не получить сигналы на выходах.
Вентили, триггеры и сумматоры
Вентиль представляет собой логический элемент, который принимает одни двоичные значения и выдает другие в зависимости от своей реализации. Так, например, есть вентили, реализующие логическое умножение (конъюнкцию), сложение (дизъюнкцию) и отрицание.
Триггеры и сумматоры – это относительно сложные устройства, состоящие из более простых элементов – вентилей.
Триггер способен хранить один двоичный разряд, за счет того, что может находиться в двух устойчивых состояниях. В основном триггеры используется в регистрах процессора.
Сумматоры широко используются в арифметико-логических устройствах (АЛУ) процессора и выполняют суммирование двоичных разрядов.
Базовые логические элементы компьютера
Логический элемент И
конъюнктор
Логический элемент ИЛИ
дизъюнктор
Логический элемент НЕ
инвертор
Сумматор двоичных чисел
Определение. Электронная логическая схема, которая выполняет суммирование двоичных кодов, называется сумматором. |
Арифметико-логическое устройство процессора (АЛУ) обязательно содержит в своем составе такие элементы как сумматоры. Эти схемы позволяют складывать двоичные числа.
Как происходит сложение? Допустим, требуется сложить двоичные числа 1001 и 0011. Сначала складываем младшие разряды (последние цифры): 1+1=10. Т.е. в младшем разряде будет 0, а единица – это перенос в старший разряд. Далее: 0 + 1 + 1(от переноса) = 10, т.е. в данном разряде снова запишется 0, а единица уйдет в старший разряд. На третьем шаге: 0 + 0 + 1(от переноса) = 1. В итоге сумма равна 1100.
Полусумматор
Теперь не будем обращать внимание на перенос из предыдущего разряда и рассмотрим только, как формируется сумма текущего разряда. Если были даны две единицы или два нуля, то сумма текущего разряда равна 0. Если одно из двух слагаемых равно единице, то сумма равна единице. Получить такие результаты можно при использовании вентиля ИСКЛЮЧАЮЩЕГО ИЛИ. Перенос единицы в следующий разряд происходит, если два слагаемых равны единице. И это реализуемо вентилем И. Тогда сложение в пределах одного разряда (без учета возможной пришедшей единицы из младшего разряда) можно реализовать изображенной ниже схемой, которая называется полусумматором. У полусумматора два входа (для слагаемых) и два выхода (для суммы и переноса). На схеме изображен полусумматор, состоящий из вентилей ИСКЛЮЧАЮЩЕЕ ИЛИ и И.
