- •1. Предмет, структура и эволюция философии науки. Философия и эпистемология.
- •2. Формы знания и их характеристика.
- •3. Понятие науки. Ее объект и предмет. Основные подходы к анализу науки.
- •4. Наука и философия
- •5. Наука как особая сфера культуры. Функции науки
- •6. Основные концепции соотношения философии и науки.
- •7. Диалектическая концепция взаимосвязи философского и конкретно-научного знания.
- •8. Философские основания науки и их виды
- •9. Наука и ее основные измерения
- •10. Наука как особый вид знания и познания
- •11. Социальные аспекты науки и научного познания
- •12. Генезис науки. Протонаучное знание Древнего Востока.
- •13. Античная наука и её основные характеристики
- •14. Специфика средневековой науки.
- •15. Формы институализации средневековой науки
- •16. Основные проблемы и достижения науки эпохи Возрождения.
- •17. Классическая наука: роль экспериментального естествознания в формировании механико-математической картины мира (г. Галилей, и. Ньютон и др.)
- •18. Эмпиризм и рационализм как познавательные программы науки Нового времени (ф. Бэкон, р. Декарт и др.).
- •19. Доктрина науки в эпоху Просвещения
- •20. Влияние немецкой классической философии на развитие науки Нового времени (и.Кант, г.Гегель и др)
- •21. Научная революция в физике рубежа XIX−XX веков.
- •22. Формирование неклассической науки и ее основные черты
- •23. Развитие неклассической науки в первой половине XX века
- •24. Особенности онтологии постнеклассического этапа развития науки.
- •25. Постнеклассическая наука: идеалы, нормы, цели, ценности
- •26. Постмодернизм и постнеклассическая наука.
- •27. Формы и виды (в)ненаучного знания.
- •28. Проблема демаркации научного знания в концепциях позитивистов.
- •29. Критерии научности знания.
- •30. Эмпирическое познание, его формы и методы.
- •31. Теоретическое знание: структура научной теории, специфика методов теоретического познания.
- •32. Соотношение эмпирии и теории. Метатеория: ее роль в науке.
- •33. Смена типов научной рациональности в ходе научных революций.
- •34. Научные традиции и научные революции. Научные революции как перестройка оснований науки.
- •35. Постпозитивистские модели динамики науки.
- •36. Эволюция институциональных форм научной деятельности.
- •37. Научное сообщество: его типы, закономерности функционирования.
- •38. Концепция устойчивого развития науки и общества.
- •39. Этика науки: содержание, проблематика.
- •Роль автора научных трудов
- •40. Наука: ценности и нормы.
- •41. Проблема ответственности ученого.
- •42. Науки о природе и науки о духе в неокантианстве.
- •43. Методологические аспекты взаимосвязи науки и философии.
- •44. Мартин Хайдеггер об онтологических основаниях техники.
- •45. Инженерный и гуманитарный подходы в оценке сущности феномена техники.
- •46. Основные методы технических наук, решение ими проблемы истинности в познании (кибернетика, теория систем, теория игр, исследование операций, теории менеджмента и др.).
- •47. Футурологические прогнозы развития современной техники.
- •48. Глобальный эволюционизм и сближение идеалов естественнонаучного и социально-гуманитарного знания.
- •49. Дисциплинарность, междисциплинарность и трансдисциплинарность современной науки.
- •50. Концепции постиндустриального, информационного общества и «общество знаний».
- •51. Современные конвергентные технологии (nbic): их социальное значение и риски.
21. Научная революция в физике рубежа XIX−XX веков.
Классическая механика господствовала в науке два столетия, идя от одного достижения к другому. Однако оказалось, что, прекрасно описывая явления электромагнетизма, уравнения Максвелла не подчиняются принципам относительности Галилея. Покоящийся и движущийся наблюдатель будут получать разные результаты при рассмотрении процессов взаимодействия движущихся и неподвижных зарядов. К концу XIX века это противоречие затронуло основания физики. Его необходимо было разрешить. В конце концов, естествознание вынуждено было отказаться от признания особой, универсальной роли механики.
В 1895 году началась научная революция, ознаменовавшая переход к новому способу познания, отражающему глубинные связи и отношения в природе. Она включала в себя как неожиданные открытия (открытия рентгеновских лучей, радиоактивности, и т.д.), так и великие теоретические достижения: квантовая теория М. Планка (1900 г.), специальная и общая теория относительности А. Эйнштейна (1905 – 1906 гг.), атомная теория Резерфорда – Бора в 1913 г.
В 1897 году английский физик Дж. Томсон открыл первую элементарную частицу – электрон. Открытия радиоактивности и электрона выдвинули проблему внутреннего строения атома. Уяснив, что электрон является составной частью атомов, Дж. Томсон предложил в 1903 году первую (электромагнитную) модель атома.
В 1909 – 1910 гг. английский физик Э. Резерфорд обнаружил, что в атомах существуют ядра – положительно заряженные микрочастицы, размер которых чрезвычайно мал по сравнению с размерами атомов. Но масса атома почти полностью сосредоточена в его ядре. Резерфорд разработал новый вариант планетарной модели. Однако эта модель атома оказалась несовместимой с электродинамикой Максвелла, согласно которой вращающиеся электроны должны непрерывно излучать электромагнитные волны, терять энергию и падать на ядро, что ведет к неустойчивости атома. Однако это в природе не наблюдается. Электроны, двигающиеся по круговым орбитам вокруг ядра, не только не падали на ядро, но и излучали не непрерывную энергию, а лишь определенными порциями – квантами. Это явление объяснил немецкий физик М. Планк в своей теории, получившей название квантовой.
В 1913 году датский физик Н. Бор, опираясь на теорию М. Планка, разработал квантовую модель атома. В ее основу он положил следующие постулаты: в любом атоме существуют дискетные (стационарные) состояния, находясь в которых атом энергию не излучает; при переходе атома из одного стационарного состояния в другое он излучает или поглощает порцию энергии.
Ядром революции в естествознании на рубеже XIX – XX веков явилось создание новой механики. Размышляя над тем, как примирить электромагнитную теорию Максвелла с классической механикой, А. Эйнштейн в 1905 году пришел к выводу, что принцип относительности справедлив не только в механике, но и в оптике и электродинамике, а видоизменять надо законы и принципы классической механики. Подвергнув глубокому критическому анализу концепцию абсолютного пространства и времени, он создал специальную теорию относительности. В ней рассматриваются явления, для которых силы тяготения слабы или вообще не существуют. Специальная теория относительности представляет собой современную теорию пространства и времени при движении со скоростями, близкими к скорости света. В 1916 году была создана общая теория относительности. Это уже теория не только пространства и времени, но и тяготения. Она открыла реальность нашего искривленного четырехмерного мира пространства–времени.
Таким образом, научная революция на рубеже XIX – XX веков характеризовалась не только возникновением новых идей, открытием новых неожиданных фактов и явлении, но и преобразованием духа естествознания в целом, возникновением нового способа мышления, глубоким изменением методологических принципов естествознания.
