- •©Издательство "Мир", 2003 введение
- •Глава 1. Вода-среда обитания рыб
- •1.1. Содержание воды в теле животных, %
- •1.2. Ионный состав мочи радужной форели
- •Глава 2. Сенсорные системы рыб
- •2.1. Внешние стимулы, воспринимаемые представителями класса рыб
- •2.2. Характеристика свечения некоторых морских организмов
- •2.3. Дальность распознавания атериной своих сородичей (длиной 1,5 см) в процессе онтогенеза
- •2.4. Изменение остроты зрения у гуппи с возрастом
- •2.5. Звуки рыб и механизм их воспроизведения
- •2.6. Электрические разряды неэлектрических рыб
- •2.7. Магнитные свойства тканей и органов желтоперого тунца
- •2.8. Химический состав магнетитных кристаллов тунца
- •2.9. Температуря воды, при которой происходит нерест
- •2.10. Некоторые открыто- и закрытопузырные рыбы
- •2.11. Травмобезопасная зона увеличения давления в плавательном пузыре закрытопузырных рыб
- •2.12. Летальные скорости перепада давления для некоторых открытопузырных рыб
- •2.13. Нижний порог чувствительности рыб к изменению давления воды, ми водного столба
- •Глава 3. Нервная система рыб
- •3.1. Абсолютная и относительная масса головного мозга и глаз у некоторых видов рыб (м. Ф. Никитенко, 1969)
- •Глава 4. Кожный покров
- •5.1. Зависимость обшей минерализации костей сеголетков карпа от интенсивности их роста, % золы в сухом веществе жаберной крышки
- •5.2. Содержание макро-(%) и микроэлементов (мг%) в костной золе сеголетков карпа
- •5.3. Характеристика красных и белых мышц
- •5.4. Коэффициент скорости разных видов рыб
- •5.5. Максимальная ундуляция некоторых видов рыб
- •Глава 6. Кровь - внутренняя среда организма
- •6.1. Распределение жидкости в организме рыб, %
- •6.2. РН крови у разных видов рыб
- •6.3. Изотонические растворы для рыб (NaCi, %)
- •6.4. Состав физиологических растворов, %
- •6.5. Онтогенетические изменения белкового спектра сыворотки крови карпа, %
- •6.6. Белковый состав сыворотки крови сеголетков карпа в зависимости от сезона года, %
- •6.7. Характеристики красной крови сеголетков и годовиков карпа
- •6.8. Эритроцитарный ряд форели (%)
- •6.9. Количество лейкоцитов в 1 мм3
- •6.10. Лейкоцитарная формула, %
- •6.11. Время свертывания крови в зависимости от способа получения крови (на примере форели)
- •6.12. Влияние стресса на время свертывания крови у форели, с
- •6.13. Время свертывания крови у разных видов рыб, с
- •6.14. Содержание форменных элементов в различных органах кроветворения и сосудистой крови, %
- •Глава 7. Особенности кровообращения рыб
- •7.1. Зависимость частоты сердечных сокращений от температуры воды
- •8.1. Сравнение воды и воздуха как среды дыхания (при температуре 20 њС)
- •8.2. Эффективность извлечения кислорода из воды разными вилами рыб, %
- •8.3. Доля кожного дыхания у разных видов рыб
- •Глава 9. Морфофункциональные особенности системы пищеварения рыб
- •Глава 10. Физиологические основы искусственного питания рыб
- •10.1. Переваримость углеводов в опытах на гольце
- •10.2. Потребность чавычи в аминокислотах
- •10.3. Примерная потребность молоди лососевых и карпа в незаменимых аминокислотах (% белка рациона)
- •10.4. Потребность рыб в витаминах (на примере карпа и лосося)
- •10.5. Потребность молоди карпа и форели в некоторых макро- и микроэлементах
- •Глава 11. Воспроизводство рыб
- •11.1. Масса зрелых гонад, %
- •11.2. Плодовитость рыб
- •11.3. Объем спермы (мл) у разных видов рыб
- •11.4. Влияние температуры воды на продолжительность инкубации икры
- •Глава 12. Эндокринная система рыб
- •Глава 15. Поведение рыб
- •15.1. Сигналы, используемые рыбами для коммуникаций
- •15.2. Вторичные половые признаки, имеющие большое значение при распознавании пола партнера
2.5. Звуки рыб и механизм их воспроизведения
Механизм образования звука |
Частотная характеристика издаваемого звука |
Субъективная характеристика звука |
Трансформация плавательного пузыря |
40 Гц - 2,0 кГц |
Ритмические стуки, стоны, хрюканье |
Работа хвоста и плавников при движении рыб |
Около 100 Гц |
Шорох, шелест |
Движения при приеме пиши, дыхании, работе Веберова аппарата |
20 Гц — 10 кГц с максимумом около 200 Гц |
Глухие удары, хруст, треск, щелканье |
Звуки рыб видоспецифичны. Кроме того, характер звука зависят от возраста рыбы и ее физиологического состояния. Звуки, исходящие от стаи и от отдельных рыб, также хорошо различимы. Например, звуки, издаваемые лещом, напоминают хрипы. Звуковая картина стаи сельдей ассоциируется с писком. Морской петух Черного моря издает звуки, напоминающие кудахтанье курицы. Пресноводный барабанщик идентифицирует себя барабанной дробью. Плотва, вьюн, щитовка издают писки, доступные для восприятия невооруженным ухом. Пока трудно однозначно охарактеризовать биологическое значение издаваемых рыбами звуков. Часть из них является шумовым фоном. Внутри популяций, стай, а также между половыми партнерами издаваемые рыбами звуки могут выполнять и коммуникативную функцию. Шумопеленгация успешно применяется в промышленном рыболовстве. Превышение звукового фона рыб над окружающими шумами составляет не более 15 дБ. Шумовой фон судна может десятикратно превышать рыбный звуковой пейзаж. Поэтому пеленг рыб возможен только с тех судов, которые могут работать в режиме "тишины", т. е. с заглушенными двигателями. Таким образом, известное выражение "нем, как рыба" явно не соответствует действительности. Все рыбы имеют совершенный аппарат звуковой рецепции. Кроме того, рыбы являются источниками акустических и гидродинамических полей, которыми они активно пользуются для общения внутри стаи, обнаружения жертвы, предупреждения сородичей о возможной опасности и других целей.
§8. ЭЛЕКТРОМАГНИТНАЯ СЕНСОРИКА Электромагнитные поля широко распространены в природе. Земля имеет собственное магнитное поле. Ионосфера Земли насыщена электрическими токами, постоянно подпитываемыми из Космоса. Электрические и магнитные явления связаны между собой. Магнитное поле Земли, величина и направление которого меняются во времени, способствует возникновению электрических полей (закон Фарадея). Единство этих двух физических явлений отразилось и на механизме восприятия рыбами электрических и магнитных полей. Электрорецепция. Функционирование всех органов рыб и особенно органов, состоящих из возбудимых тканей, сопровождается образованием электрических и магнитных полей. Для морской воды характерен электрический потенциал 0,1-0,5 мкВ/см, созданный течением. Водная среда, в которой обитают рыбы, обладает высокой электропроводностью. Поэтому вполне закономерно, что электромагнитные поля играют важную роль в жизни рыб. Электрический потенциал воды может выполнять роль своеобразных маяков при миграциях рыб. Электрическую реактивность (электрораздражимость) рыб принято делить на три уровня. Первый (нижний) уровень (порог) ее характеризуется легким подергиванием всего тела или его части. Для большинства рыб нижний порог электрораздражимости оценивают в 10-100 мВ/см. Второй уровень (гальванотаксис) проявляется в направленной локомоторной реакции на действие электрического раздражителя. Третий уровень -электрошок--это ответ рыбы на раздражитель сверхпороговой величины. Существуют виды, у которых в процессе эволюции сформировались высокоспециализированные электрические органы, обеспечивающие электромагнитную рецепцию или генерирующие электрические импульсы различной величины. Их довольно много (около 300 морских и пресноводных видов). Различают 3 группы рыб. В первую группу входят сильноэлектрические виды с хорошо развитыми специализированными электрическими органами (создают импульсы 100-400 В), во вторую - слабоэлектрические виды, имеющие биологические электрогенераторы (создают импульсы до 1 В). У сильноэлектрических видов нижний порог электрочувствительности на 3-4 порядка выше, чем у слабоэлектрических. Например, для отпугивания акул достаточно создать градиент напряжения 10-100 мкВ/см. Неэлектрические виды без специализированных электрических органов (большая часть ихтиофауны) создают поля с напряжение от нескольких микровольт до сотен милливольт. Группу сильноэлектрических рыб представляют электрические скаты, электрические угри (пресноводные), электрический сом из водоемов Африки, Все они являются активными хищниками и генерируют мощные электрические разряды (до 600 В с силой тога до 1 А) для поражения своей жертвы на расстоянии нескольких метров или для собственной защиты от более крупных хищником Поражающий эффект этих хищников таков, что человек, попадающий в их электрическое поле, подвергается мышечному параличу и временно теряет сознание. Группа слабоэлектрических видов более многочисленна. Это пресноводные рыбы отряда мормирид, которые практически непрерывно генерируют слабые ритмичные импульсы от 0,3 до 12 В. доказано, что эти рыбы используют электрические импульсы для внутри- и межвидового общения. Неэлектрические виды наиболее заметные электрические импульсы генерируют в состоянии большого напряжения: при бросках на жертву (щука), агрессивно-оборонительных реакциях (форель, окунь), нересте (все рыбы). Доказано, что параметры импульсов этих видов рыб (амплитуда, частота, время электроимпульса) зависят от функционального состояния и температуры воды. Хищники и ночные рыбы по сравнению с мирными и дневными рыбами имеют более сильные электромагнитные поля. В табл. 2.6 приведены характеристики электрических разрядов неэлектрических (пресноводных) рыб.
