- •Адиабатический[
- •Изотермический
- •Изохорный
- •Изобарный[править | править вики-текст]
- •Вывод формулы для теплоёмкости в данном процессе[
- •10. Тепловые машины цикл Корно
- •2.12.2Холодильные машины
- •2.12.3Тепловая машина Карно
- •Кпд тепловой машины Карно
- •§7 Второе начало термодинамики
- •Каноническое уравнение состояния
- •Переход от одних термодинамических потенциалов к другим. Формулы Гиббса — Гельмгольца
- •Метод термодинамических потенциалов. Соотношения Максвелла
- •2. Внутренняя энергия реального газа
- •3. Уравнение Ван-дер-Ваальса
- •Капиллярные явления
2.12.3Тепловая машина Карно
Важными характеристиками тепловой машины являются наибольшее и наименьшее значения температуры рабочего тела в ходе цикла. Эти значения называются соответственно температурой нагревателя и температурой холодильника.
Мы видели, что КПД теплового двигателя строго меньше единицы. Возникает естественный вопрос: каков наибольший возможный КПД теплового двигателя с фиксированными значениями температуры нагревателя T1 и температуры холодильника T2?
Пусть, например, максимальная температура рабочего тела двигателя равна 1000 K, а минимальная 300 K. Каков теоретический предел КПД такого двигателя?
Ответ на поставленный вопрос дал французский физик и инженер Сади Карно в 1824 году. Он придумал и исследовал замечательную тепловую машину с идеальным газом в качестве
рабочего тела. Эта машина работает по циклу Карно, состоящему из двух изотерм и двух адиабат.
Рассмотрим прямой цикл машины Карно, идущий по часовой стрелке (рис. 2.35). В этом случае машина функционирует как тепловой двигатель.
2. На участке 1 газ приводится в тепловой контакт с нагревателем температуры T1 и расширяется изотермически. От нагревателя поступает количество теплоты Q1 и целиком превращается в работу на этом участке: A12 = Q1.
Адиабата 2 ! 3. В целях последующего сжатия нужно перевести газ в зону более низких температур. Для этого газ теплоизолируется, а затем расширяется адиабатно на учатке 2 ! 3. При расширении газ совершает положительную работу A23, и за счёт этого уменьшается его внутренняя энергия: U23 = A23.
Изотерма 3 ! 4. Теплоизоляция снимается, газ приводится в тепловой контакт с холодильником температуры T2. Происходит изотермическое сжатие. Газ отдаёт холодильнику количество теплоты Q2 и совершает отрицательную работу A34 = Q2.
Адиабата 4 ! 1. Этот участок необходим для возврата газа в исходное состояние. В ходе адиабатного сжатия газ совершает отрицательную работу A41, а изменение внутренней энергии положительно: U41 = A41. Газ нагревается до исходной температуры T1.
Карно нашёл КПД этого цикла (вычисления, к сожалению, выходят за рамки школьной программы):
Кроме того, он доказал, что КПД цикла Карно является максимально возможным для всех тепловых двигателей с температурой нагревателя T1 и температурой холодильника T2.
Так, в приведённом выше примере (T1 = 1000 K, T2 = 300 K) имеем
В чём смысл использования именно изотерм и адиабат, а не каких-тодругих процессов? Оказывается, изотермические и адиабатные процессы делают машину Карно обратимой. Её можно запустить по обратному циклу (против часовой стрелки) между теми же нагревателем и холодильником, не привлекая другие устройства. В таком случае машина Карно будет функционировать как холодильная машина.
Возможность запуска машины Карно в обоих направлениях играет очень большую роль в термодинамике. Например, данный факт служит звеном доказательства максимальности КПД цикла Карно. Мы ещё вернёмся к этому в следующем разделе, посвящённом второму закону термодинамики.
ЦИКЛ КАРНО
В термодинамике цикл Карно́ или процесс Карно — это обратимый круговой процесс, состоящий из двух адиабатических и двух изотермических процессов[1]. В процессе Карно термодинамическая система выполняет механическую работу и обменивается теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой — холодильником
Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году
Поскольку обратимые процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному обратимому процессу Карно только с большей или меньшей степенью точности. В цикле Карно тепловая машина преобразует теплоту в работу с максимально возможным коэффициентом полезного действия из всех тепловых машин, у которых максимальная и минимальная температуры в рабочем цикле совпадают соответственно с температурами нагревателя и холодильника в цикле Карно.
Цикл Карно в координатах T—S
Пусть тепловая
машина состоит из нагревателя с
температурой
,
холодильника с температурой
и рабочего
тела.
Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две — при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах T (температура) и S (энтропия).
1. Изотермическое
расширение (на
рис. 1 — процесс A→Б). В начале процесса
рабочее тело имеет температуру
,
то есть температуру нагревателя. Затем
тело приводится в контакт с нагревателем,
который изотермически (при постоянной
температуре) передаёт ему количество
теплоты
.
При этом объём рабочего тела увеличивается,
оно совершает механическую работу, а
его энтропия возрастает.
2. Адиабатическое расширение (на рис. 1 — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника , тело совершает механическую работу, а энтропия остаётся постоянной.
3. Изотермическое
сжатие (на
рис. 1 — процесс В→Г). Рабочее тело,
имеющее температуру
,
приводится в контакт с холодильником
и начинает изотермически сжиматься под
действием внешней силы, отдавая
холодильнику количество теплоты
.
Над телом совершается работа, его
энтропия уменьшается.
4. Адиабатическое сжатие (на рис. 1 — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.
