- •Индивидуальный проект симметрия вокруг нас
- •Содержание
- •Введение
- •Раздел 1. Симметрия в математике
- •1.1 Центральная симметрия
- •1. 2 Симметрия вращения
- •1.3 Осевая симметрия
- •1.4 Зеркальная симметрия
- •Раздел 2. Симметрия в природе,в школе,и на улицах нашего города
- •2.1Симметрия в мире животных
- •2.2 Симметрия «в мире растений»
- •2.3 Симметрия в различных школьных предметах
- •2.4 Симметрия на улицах нашего города
- •Список использованной литературы
Раздел 1. Симметрия в математике
Фундаментальным понятием науки, которое наряду с понятием "гармонии" имеет отношение практически ко всем структурам природы, науки и искусства, является "симметрия". Выдающийся математик Герман Вейль высоко оценил роль симметрии в современной науке: "Симметрия, как бы широко или узко мы не понимали это слово, есть идея, с помощью которой человек пытался объяснить и создать порядок, красоту и совершенство".
Что же такое "симметрия"? Когда мы смотрим в зеркало, мы наблюдаем в нем свое отражение - это пример "зеркальной" симметрии. На явление симметрии в живой природе обратили внимание еще пифагорейцы в связи с развитием ими учения о гармонии. Установлено, что в природе наиболее распространены два вида симметрии - "зеркальная" и "лучевая" симметрии. "Зеркальной" симметрией обладает бабочка, листок или жук и часто такой вид симметрии называется "симметрией листка" или "билатеральной симметрией". К формам с лучевой симметрией относятся гриб, ромашка, сосновое дерево и часто такой вид симметрии называется "ромашко-грибной" симметрией.
Еще в 19-м веке исследования в этой области привели к заключению, что симметрия природных форм в значительной степени зависит от влияния сил земного тяготения, которое в каждой точке имеет симметрию конуса. В результате был найден следующий закон, которому подчиняются формы природных тел: "Все то, что растет или движется по вертикали, то есть вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой ("ромашко-грибной") симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется "симметрии листка".
Но вместе с тем симметрия воспринимается нами как элемент красоты вообще и красоты природы в частности. Математики вкладывают в понятие симметрия точный математический смысл, рассматривают специальные виды симметрии. И в результате симметрия становится мощным средством математических исследований, помогает решать трудные задачи.
Итак, геометрический объект или физическое явление считаются симметричными, если с ними можно сделать что-то такое, после чего они останутся неизменными. И если говорить о геометрических объектах, то симметрию можно будет называть геометрической, если о физических явлениях, то – физическая симметрия.
Например, пятиконечная звезда, будучи повёрнута на 72° (360°: 5), займёт первоначальное положение, а ваш будильник одинаково звенит в любом углу комнаты. Благодаря симметрии все физические приборы (в том числе и будильник) одинаково работают в разных точках пространства, если, конечно, не изменяются окружающие физические условия. Легко вообразить, какая бы царила на Земле неразбериха, если бы эта симметрия была нарушена: вещи бы были непонятной формы, зеркало бы показывало наше отражение задом, а не передом, а мы бы с вами просто не смогли бы ходить, видели одним глазом и ели бы одной рукой.
Таким образом, общим для всех них (геометрических объектов или физических явлений) принципом симметрии пронизаны многообразные физические и биологические законы гравитации, электричества и магнетизма, ядерных взаимодействий, наследственности, начиная от текстильного производства, кончая тонкими вопросами строения вещества.
