- •Электрический привод
- •Пояснительная записка
- •Тематический план по дисциплине «Электрический привод» по специальности 140603 «Электрические машины и аппараты»
- •Тематический план по дисциплине «Электрический привод» по специальности 220301 «Автоматизация технологических процессов и производств» (по отраслям)
- •1 Введение
- •1.1 История развития электропривода
- •1.2 Основные направления развития электропривода
- •1.3 Структурная схема электропривода
- •1.4 Классификация электроприводов
- •2 Механика электропривода
- •2.1 Статический и динамический моменты
- •2.2 Уравнение движения электропривода
- •2.3 Механические характеристики
- •2.4 Жесткость характеристики
- •2.5 Приведение статических моментов и моментов инерции
- •Приведение Мс:
- •Приведение момента инерции.
- •3 Электропривод с двигателем постоянного тока
- •3.1 Статические характеристики двигателей постоянного тока независимого возбуждения
- •3.2 Энергетические режимы работы двигателей постоянного тока независимого возбуждения
- •3.3 Статические характеристики двигателей постоянного тока последовательного возбуждения
- •3 .4 Свойства и характеристики двигателей постоянного тока смешанного возбуждения
- •3.5 Построение статических характеристик двигателей постоянного тока
- •3.6 Пусковая диаграмма двигателей постоянного тока независимого возбуждения
- •3.7 Тормозные режимы двигателей постоянного тока
- •3.8 Расчет резисторов
- •3.9 Регулирование скорости двигателей постоянного тока
- •4 Электропривод с двигателем переменного тока
- •4.1 Электропривод с асинхронным двигателем
- •4.1.1 Механические характеристики
- •4.1.2 Пуск асинхронного двигателя с фазным ротором
- •4.1.3 Расчет пусковой диаграммы
- •4.1.4 Пуск асинхронного двигателя с короткозамкнутым ротором
- •4.1.5 Торможение асинхронного двигателя
- •I Противовключение
- •II Рекуперативное торможение.
- •III Динамическое торможение
- •4 .1.6 Методы регулирования скорости
- •1) Включение резисторов:
- •2) Изменение напряжения.
- •3 ) Изменение частоты питающей сети.
- •4) Изменение пар полюсов.
- •4.2 Электропривод с синхронным двигателем
- •4.2.1 Схема включения
- •4.2.2 Пуск синхронного двигателя
- •4.2.3 Регулирование скорости и торможение
- •5 Энергетика электропривода
- •5.1 Потери мощности и энергии в электродвигателе
- •В установившемся режиме работы.
- •Потери энергии в переходных режимах.
- •5.2 Кпд и коэффициент мощности
- •5.3 Понятие переходных процессов электропривода
- •5.4 Нагревание и охлаждение электродвигателя
- •5.5 Режимы работы электродвигателей
- •5.6 Выбор электродвигателя для электропривода
- •6 Системы электропривода
- •6.1 Управление пуском в функции различных величин
- •6.2 Типовые узлы схем электропривода с электродвигателем постоянного тока независимого возбуждения
- •6.3 Типовые узлы схем с асинхронным двигателем
- •6.4 Замкнутые системы электропривода
- •6.5 Следящий электропривод
- •Библиография
- •Приложение а
- •Приложение б
2 Механика электропривода
2.1 Статический и динамический моменты
Механическая часть ЭП – ротор (якорь) ЭД, элементы механической передачи (редуктор); ИО рабочей машины.
Д
вижение
механической части ЭП подчиняется
законом механики. Рассмотрим простейшую
схему ЭП:
ЭД вращает точильный круг, находящийся на валу.
М – момент на валу ЭД (вращающий);
Мс – момент сопротивления ИО (создается за счет срезания слоя металла с затачиваемого инструмента) – статический момент.
Статические моменты бывают:
А
ктивный
Мс – действует всегда в
одном направлении независимо от того,
находится ли система в покое или движется
в ту или иную сторону.
Например: момент висящего груза (см. рисунок 2.2).
Р
еактивный
Мс
– действует
только при движении и направлен всегда
против движения (см. рисунок 2.3).
Например: момент, создаваемый силами трения, обусловленный резаньем металла.
Чтобы ЭП вращался момент двигателя М должен преодолевать статический момент Мс. Если М≠Мс, то возникает динамический момент:
,
где
–
угловое ускорение.
J = m∙r2 [кг∙м2] – момент инерции всех вращающихся масс (m – масса тела, r – радиус инерции); J характеризует инертность привода.
Иногда в справочниках указывается не момент инерции J, а маховый момент (Mм) – произведение веса тела на диаметр инерции:
Mм=G·D2 [кг∙м2], где G – вес.
,
если GD2 в [кг∙м2],
,
если GD2 в [Н∙м2]
2.2 Уравнение движения электропривода
1) M>Мс,
тогда
(+), →
(+), → ускорение ЭП (скорость ω ↑)
2) M=Мс,
тогда
=0,
→ ω=const (частный случай
ω=0), → ЭП вращается с постоянной скоростью;
3
В общем виде уравнение имеет вид:
"+" в том случае, когда момент направлен согласно, "–" – когда против движения.
1)
Например: передвижение моста/тележки крана.
2)
– электрическое торможение механизма.
Например: при переключении фаз момент у ЭД тормозной
3)
Например: тормозной спуск тяжелых грузов. ЭД включен на подъем, а тяжелый груз опускается (см. рисунок 2.4 а).
4
)
Например: ЭД включается на спуск легкого груза (силовой спуск – см. рисунок 2.4 б).
2.3 Механические характеристики
Эксплуатационные свойства ЭП зависят от соотношения момента и скорости движения ИО.
З
ависимости
ω=f(Mc),
n=f(Mc)
– называются механическими
характеристиками производственного
механизма (рисунок 2.5):
1 – Mc = const (брус на барабане)
2
– Mc
~ ω (генератор постоянного
тока с независимым возбуждением,
работающий на R=const)
3 – Mc ~ ω2 (вентиляторы, компрессоры)
Зависимости ω=f(Mc), n=f(Mc) – называются механическими характеристиками ЭД (рисунок 2.6).
1 – Синхронный двигатель;
2 – ЭД постоянного тока независимого возбуждения;
3 – ЭД постоянного тока последовательного возбуждения;
4 – Асинхронный двигатель;
Е
сли
графики 2.5 и 2.6 совместить, то получим
точку установившегося режима.
В точке А (рисунок 2.7) Мс=М, значит это точка установившейся работы (со скоростью ωуст)
2.4 Жесткость характеристики
На рисунке 2.8:
1 – абсолютно жесткая (СД)
2 – жесткая (ДПТ НВ, АД)
3 – мягкая (ДПТ ПВ, АД с добавочным сопротивлением в цепи ротора)
4 – абсолютно мягкая (груз на валу)
