- •Содержание
- •1 Теория построения инфокоммуникационных систем и сетей
- •1.1 Понятие виртуальной локальной компьютерной сети vlan (Virtual Local Area Network). Типы создания vlan.
- •1.2 Технология mpls (Мultiprotocol Label Switching): назначение, задачи, создание виртуального пути lsp (Label Switch Path) на базе данной технологии.
- •Формат протокола Gigabit Ethernet и назначение основных его составляющих. Порядок доступа к среде передачи.
- •1.4 Назначение коммутаторов используемых в сетях передачи данных, их функции, принципы построения и способы передачи.
- •1.5Назначение маршрутизаторов, структура маршрутизаторов, назначение всех составляющих.
- •1.6Пояснить основные алгоритмы маршрутизации в сетях передачи данных.
- •1.7Пояснить управление соединением по протоколу тср.
- •1.8 Пояснить общую архитектуру сетей нового поколения.
- •1.9 Архитектура мультимедийной подсистемы на базе ip-протокола (ims – ip Multimedia Subsystem). Характеристика компонентов ims.
- •1.10 Назначение и состав компонентов Softswitch.
- •1.11 Концепция fmc (Fixed Mobile Convergence) в сетях нового поколения.
- •1 Дан адрес 10.72.83.55/20 определить номер подсети, номер хоста в подсети и количество хостов в одной подсети.
- •3 Задана сеть класса а, необходимо создать 72 подсети, определить маску, адрес 10,11,15 подсетей, определить количество хостов в одной подсети
- •2Электромагнитная совместимость рэс и систем
- •2.2 Задачи и средства обеспечения электромагнитной совместимости рэс
- •2.3 Организационно-технические меры обеспечения эмс (эмс 1.2)
- •2.4 Излучения радиопередающих устройств
- •2.5 Характеристики антенн влияющих на эмс
- •2.6 Основные параметры антенн
- •2.7 Особенности распространения полезных радиосигналов. Распространение мешающих радиосигналов
- •3Волоконно-оптические системы передачи
- •3.1Источники оптического излучения для восп. Требования, предъявляемые к источникам. Классификация. Характеристики.
- •3.2Лазерные диоды. Принцип действия. Конструкция. Характеристики лазерных диодов.
- •3.4Приемные оптические модули. Структурная схема. Назначения. Требования, предъявляемые к приемным оптическим модулям восп
- •3.5Оптические модуляторы. Виды. Характеристики. Принцип работы электрооптического модулятора на основе интерферометра Маха - Цендера.
- •3.6Фотоприемники для оптических систем передачи. Назначение. Характеристики. Принцип работы p-I-n фотодиода.
- •3.7Фотоприемники для оптических систем передачи. Назначение. Характеристики. Принцип действия лавинного фотодиода.
- •3.8Линейные коды восп. Требования, предъявляемые к линейным кодам. Коды классов 1в2в, nrz, rz. Алгоритмы формирования.
- •3.9Оптические усилители (полупроводниковые, рамановские, волоконно-оптические легированные эрбием). Назначение, классификация. Структурная схема и принцип действия edfa усилителя.
- •2 Показать временные графики линейных кодов nrz и rz для информационной последовательности 11101100010010111.
- •4Программное обеспечение цск
- •4.1 Состав системы коммутационных программ. Граф установления соединений. Процесс последовательности этапов обслуживания вызовов, последовательности этапов установления соединения.
- •4.2 Состав и принципы построения по цск.
- •4.3 Классификация данных по цск.
- •4.4 Структура системы коммутационных программ цск.
- •4.6 Система программ технического обслуживания. Программы диагностики. Виды диагностических тестов.
- •Двухступенчатая дешифрация применяется для сокращения резервируемой области памяти и возможности наращивания емкости атс (рисунок 2).
- •3Разработать логическую схему организации запуска периодических программ высокой степени срочности. На данном уровне работает 8 программ.
- •5Беспроводные технологии и сети эвм
- •5.1 Назначение Bluetooth, общие принципы построения Bluetooth сетей, Передача данных в Bluetooth, протоколы. Структура пакета, работа протокола Bluetooth. Проблема безопасности в сетях Bluetooth.
- •5.2 Общие принципы построения сетей WiMax, группирование частот в сетях WiMax, Уровень доступа к среде передачи в сетях WiMax
- •5.3 ZigBee, назначение, общие принципы построения ZigBee сетей.
- •5.4 Модуляция ofdm, особенности, преимущества, применение.
- •5.5 Технология mimo, назначение, применение, принцип работы.
- •5.6 Принципы построения сетей lte-Advanced, методы модуляции, частоты, агрегирование спектра.
- •5.7 Топологии построения сетей Wi-Fi, частоты, стандарты. Режимы работы точек доступа в Wi-Fi сетях. Безопасность Wi-Fi сетей.
- •6Методы моделирования оптимизации
- •6.1Пояснить в чем сущность метода золотого сечения, применяемого для решения задач оптимизации.
- •6.2Пояснить в чем сущность метода деления отрезка пополам, применяемого для нахождения оптимальных точек функции.
- •6.3Пояснить каковы особенности решения оптимизационных задач в MathCad
- •6.4Пояснить каковы особенности решения оптимизационных задач в msExсel
- •6.5Дать понятие унимодальной функции. Пояснить алгоритм проверки функции на унимодальность.
- •6.6Пояснить применение регрессионного анализа, применяемого для решения задач оптимизации.
- •Последовательность этапов регрессионного анализа:
- •Задачи регрессионного анализа:
- •7Современные методы защиты информации
- •7.1 Основные понятия обеспечения безопасности информации: конфиденциальность, целостность, доступность.
- •7.2 Виды мер обеспечения информационной безопасности: законодательные, морально-этические, организационные, технические, программно-математические. Правовые (законодательные)
- •Морально-этические
- •Технологические
- •Организационные
- •7.3 Основные защитные механизмы построения систем защиты информации: идентификация и аутентификация. Разграничение доступа. Контроль целостности.
- •7.4 Криптографические механизмы конфиденциальности, целостности и аутентичности информации. Электронная цифровая подпись.
- •7.5 Понятие компьютерного вируса, пути его распространения, проявление действия.
- •7.6 Классификация антивирусных программ. Программы-детекторы, программы-доктора, программы-ревизоры, программы-фильтры. Профилактика заражения вирусом.
- •5Зашифруйте строку со своей фамилией (заглавными буквами) с помощью таблицы Вижинера с использованием ключевого слова «Безопасность».
- •6Зашифруйте строку со своим именем и отчеством (заглавными буквами) с помощью таблицы Вижинера с использованием ключевого слова «экзамен». Указание: используйте таблицу Вижинера.
- •8Компьютерные технологии в науке и производстве
- •8.1 Пояснить в чем заключается суть статистической обработки данных эксперимента.
- •8.2 Пояснить какие функции статистической обработки используются для описательной статистики. Дать понятие доверительного интервала.
- •8.3 Дать понятие и характеристику видам аппроксимации.
- •8.4 Дать характеристику метода линейной регрессии: описание метода, реализация метода в MathCad.
- •8.5 Пояснить в чем сходство и различие между линейной регрессией и кусочно-линейной интерполяцией.
- •8.6 Дать понятия интерполяции и экстраполяции. Пояснить какие программные средства позволяют реализовать двумерную интерполяцию.
- •8.7 Пояснить, каким образом можно осуществить интерполяцию и экстраполяцию в Excel, MathCad.
6Методы моделирования оптимизации
6.1Пояснить в чем сущность метода золотого сечения, применяемого для решения задач оптимизации.
Сущность метода золотого сечения для решения задач оптимизации заключается в уменьшении длины интервала неопределенности (ИН) на котором функция заведомо имеет минимум, для достижения заданной точности нахождения минимума.
В основе метода лежит принцип деления отрезка в пропорцияхзолотого сечения.
Пусть
заданафункция
.
Тогда для того, чтобы найти определённое
значение этой функции на заданном
отрезке, отвечающее критерию поиска
(пусть это будетминимум),
рассматриваемый отрезок делится в
пропорции золотого сечения в обоих
направлениях, то есть выбираются две
точки
и
такие,
что:
.
Т
аким
образом:
То
есть точка
делит
отрезок
в
отношении золотого сечения. Аналогично
делит
отрезок
в
той же пропорции. Это свойство и
используется для построения итеративного
процесса.
На первой итерации заданный отрезок делится двумя симметричными относительно его центра точками и рассчитываются значения в этих точках.
После чего тот из концов отрезка, к которому среди двух вновь поставленных точек ближе оказалась та, значение в которой максимально (для случая поискаминимума), отбрасывают.
На следующей итерации в силу показанного выше свойства золотого сечения уже надо искать всего одну новую точку.
Процедура продолжается до тех пор, пока не будет достигнута заданная точность.
Шаг
1.Задаются начальные границы отрезка
и
точность
.
Шаг
2.Рассчитывают начальные точки деления:
и
значения в нихцелевой
функции:
.
Е
сли
(для
поиска max изменить неравенство на
),
то
иначе
Шаг 3.
Если
,
то
Иначе возврат к шагу 2.
6.2Пояснить в чем сущность метода деления отрезка пополам, применяемого для нахождения оптимальных точек функции.
Метод деления отрезка пополам.Пусть дано уравнениеf(x)=0, функция f(x) непрерывна на интервале [a,b]. Условие f(a)*f(b)<0 указывает тогда на наличие хотя бы одного корня на этом отрезке.
Поделим отрезок [a,b] пополам точкой c, координата которой c=(a+b)/2 и вычислим значение функции f(c). Возможны два случая: а) f(a)*f(c)>0, т.е. значения функции на концах отрезка [a, c] одинаковы по знаку; тогда корень уравнения находится на отрезке [c, b] и отрезок [a, c] можно исключить из дальнейшего рассмотрения, перенеся точку a в точку c:a=c; f(a)=f(c) (рис. а);
б)
f(a)*f(c)<0,
т.е. значение функции на концах отрезка
[a,
c]
противоположны по знаку; тогда корень
находится на отрезке [a,
c]
и отрезок [c,
b]
можно исключить из дальнейшего
рассмотрения, перенеся точку bв
точку c:b=c
(рис.
б). После исключения правой или левой
половины отрезка продолжают деление
пополам до тех пор, пока длина оставшегося
интервала [a,
b]
не станет меньше некоторой заданной
малой величины
,
т.е.|b-a|<
,
и тогда любое значение аргумента из
отрезка [a,
b]
можно считать корнем с погрешностью
.
Обычно принимают в качестве корня
середину отрезка.
Отметим, что здесь имеет смысл допустимой абсолютной погрешности вычисления корня. Достоинством метода является его безусловная сходимость, если на интервале [a, b] имеется хотя бы один корень. Кроме того, метод не использует производных. К недостаткам относят медленную сходимость, т.е. достаточно большое число вычислений функции f(x)по сравнению с другими методами. Рекомендуется к использованию в тех случаях, если нет жестких требований ко времени счета
