- •Содержание
- •1 Теория построения инфокоммуникационных систем и сетей
- •1.1 Понятие виртуальной локальной компьютерной сети vlan (Virtual Local Area Network). Типы создания vlan.
- •1.2 Технология mpls (Мultiprotocol Label Switching): назначение, задачи, создание виртуального пути lsp (Label Switch Path) на базе данной технологии.
- •Формат протокола Gigabit Ethernet и назначение основных его составляющих. Порядок доступа к среде передачи.
- •1.4 Назначение коммутаторов используемых в сетях передачи данных, их функции, принципы построения и способы передачи.
- •1.5Назначение маршрутизаторов, структура маршрутизаторов, назначение всех составляющих.
- •1.6Пояснить основные алгоритмы маршрутизации в сетях передачи данных.
- •1.7Пояснить управление соединением по протоколу тср.
- •1.8 Пояснить общую архитектуру сетей нового поколения.
- •1.9 Архитектура мультимедийной подсистемы на базе ip-протокола (ims – ip Multimedia Subsystem). Характеристика компонентов ims.
- •1.10 Назначение и состав компонентов Softswitch.
- •1.11 Концепция fmc (Fixed Mobile Convergence) в сетях нового поколения.
- •1 Дан адрес 10.72.83.55/20 определить номер подсети, номер хоста в подсети и количество хостов в одной подсети.
- •3 Задана сеть класса а, необходимо создать 72 подсети, определить маску, адрес 10,11,15 подсетей, определить количество хостов в одной подсети
- •2Электромагнитная совместимость рэс и систем
- •2.2 Задачи и средства обеспечения электромагнитной совместимости рэс
- •2.3 Организационно-технические меры обеспечения эмс (эмс 1.2)
- •2.4 Излучения радиопередающих устройств
- •2.5 Характеристики антенн влияющих на эмс
- •2.6 Основные параметры антенн
- •2.7 Особенности распространения полезных радиосигналов. Распространение мешающих радиосигналов
- •3Волоконно-оптические системы передачи
- •3.1Источники оптического излучения для восп. Требования, предъявляемые к источникам. Классификация. Характеристики.
- •3.2Лазерные диоды. Принцип действия. Конструкция. Характеристики лазерных диодов.
- •3.4Приемные оптические модули. Структурная схема. Назначения. Требования, предъявляемые к приемным оптическим модулям восп
- •3.5Оптические модуляторы. Виды. Характеристики. Принцип работы электрооптического модулятора на основе интерферометра Маха - Цендера.
- •3.6Фотоприемники для оптических систем передачи. Назначение. Характеристики. Принцип работы p-I-n фотодиода.
- •3.7Фотоприемники для оптических систем передачи. Назначение. Характеристики. Принцип действия лавинного фотодиода.
- •3.8Линейные коды восп. Требования, предъявляемые к линейным кодам. Коды классов 1в2в, nrz, rz. Алгоритмы формирования.
- •3.9Оптические усилители (полупроводниковые, рамановские, волоконно-оптические легированные эрбием). Назначение, классификация. Структурная схема и принцип действия edfa усилителя.
- •2 Показать временные графики линейных кодов nrz и rz для информационной последовательности 11101100010010111.
- •4Программное обеспечение цск
- •4.1 Состав системы коммутационных программ. Граф установления соединений. Процесс последовательности этапов обслуживания вызовов, последовательности этапов установления соединения.
- •4.2 Состав и принципы построения по цск.
- •4.3 Классификация данных по цск.
- •4.4 Структура системы коммутационных программ цск.
- •4.6 Система программ технического обслуживания. Программы диагностики. Виды диагностических тестов.
- •Двухступенчатая дешифрация применяется для сокращения резервируемой области памяти и возможности наращивания емкости атс (рисунок 2).
- •3Разработать логическую схему организации запуска периодических программ высокой степени срочности. На данном уровне работает 8 программ.
- •5Беспроводные технологии и сети эвм
- •5.1 Назначение Bluetooth, общие принципы построения Bluetooth сетей, Передача данных в Bluetooth, протоколы. Структура пакета, работа протокола Bluetooth. Проблема безопасности в сетях Bluetooth.
- •5.2 Общие принципы построения сетей WiMax, группирование частот в сетях WiMax, Уровень доступа к среде передачи в сетях WiMax
- •5.3 ZigBee, назначение, общие принципы построения ZigBee сетей.
- •5.4 Модуляция ofdm, особенности, преимущества, применение.
- •5.5 Технология mimo, назначение, применение, принцип работы.
- •5.6 Принципы построения сетей lte-Advanced, методы модуляции, частоты, агрегирование спектра.
- •5.7 Топологии построения сетей Wi-Fi, частоты, стандарты. Режимы работы точек доступа в Wi-Fi сетях. Безопасность Wi-Fi сетей.
- •6Методы моделирования оптимизации
- •6.1Пояснить в чем сущность метода золотого сечения, применяемого для решения задач оптимизации.
- •6.2Пояснить в чем сущность метода деления отрезка пополам, применяемого для нахождения оптимальных точек функции.
- •6.3Пояснить каковы особенности решения оптимизационных задач в MathCad
- •6.4Пояснить каковы особенности решения оптимизационных задач в msExсel
- •6.5Дать понятие унимодальной функции. Пояснить алгоритм проверки функции на унимодальность.
- •6.6Пояснить применение регрессионного анализа, применяемого для решения задач оптимизации.
- •Последовательность этапов регрессионного анализа:
- •Задачи регрессионного анализа:
- •7Современные методы защиты информации
- •7.1 Основные понятия обеспечения безопасности информации: конфиденциальность, целостность, доступность.
- •7.2 Виды мер обеспечения информационной безопасности: законодательные, морально-этические, организационные, технические, программно-математические. Правовые (законодательные)
- •Морально-этические
- •Технологические
- •Организационные
- •7.3 Основные защитные механизмы построения систем защиты информации: идентификация и аутентификация. Разграничение доступа. Контроль целостности.
- •7.4 Криптографические механизмы конфиденциальности, целостности и аутентичности информации. Электронная цифровая подпись.
- •7.5 Понятие компьютерного вируса, пути его распространения, проявление действия.
- •7.6 Классификация антивирусных программ. Программы-детекторы, программы-доктора, программы-ревизоры, программы-фильтры. Профилактика заражения вирусом.
- •5Зашифруйте строку со своей фамилией (заглавными буквами) с помощью таблицы Вижинера с использованием ключевого слова «Безопасность».
- •6Зашифруйте строку со своим именем и отчеством (заглавными буквами) с помощью таблицы Вижинера с использованием ключевого слова «экзамен». Указание: используйте таблицу Вижинера.
- •8Компьютерные технологии в науке и производстве
- •8.1 Пояснить в чем заключается суть статистической обработки данных эксперимента.
- •8.2 Пояснить какие функции статистической обработки используются для описательной статистики. Дать понятие доверительного интервала.
- •8.3 Дать понятие и характеристику видам аппроксимации.
- •8.4 Дать характеристику метода линейной регрессии: описание метода, реализация метода в MathCad.
- •8.5 Пояснить в чем сходство и различие между линейной регрессией и кусочно-линейной интерполяцией.
- •8.6 Дать понятия интерполяции и экстраполяции. Пояснить какие программные средства позволяют реализовать двумерную интерполяцию.
- •8.7 Пояснить, каким образом можно осуществить интерполяцию и экстраполяцию в Excel, MathCad.
2 Показать временные графики линейных кодов nrz и rz для информационной последовательности 11101100010010111.
3 Определить количество мод многомодового лазера с резонатором Фабри-Перо, если длина резонатора L = 250 мкм, показатель преломления n = 3,7, а центральная длина волны l0=0,45 мкм, ширина полосы излучения Dl=38 нм.
Определяем расстояние между модами:
Dlm=(l0)2/(2*L*n)=(0.45*10-6)2 / (2*250*10-6*3,7)=109,45*10-12 (м)
Определяем число мод:
M=Dl/ Dlm= (38*10-9) / (109,45*10-12)=347,19
4 Определить максимальную длину оптической линии связи, если мощность лазерного диода Pлд= +2 дБ, чувствительность фотодиода Pфд = -24 дБ, поглощение оптического сигнала в волокне на один километр αкм = 0,20 дБ/км, строительная длина оптического кабеля lстр=3км, потери в сварном соединении αсв = 0,04 дБ, потери на оптическом разъеме αр=0,3 дБ.
Квадратики разъемные соединения, кружки – сварные швы.
Э – энергетический потенциал;А – суммарные потери в линии.
– мощность
излучателя.
– чувствительность приемника.
где:
– длина линии от станционного оборудования
OLT
до «самого» удаленного абонента;
– километрическое
затухание оптоволокна;
– количество
сварных соединений;
– вносимые
потери сварным соединением;
– количество
оптических разъемных соединений;
– вносимые
потери разъемным соединением;
Потери в разъемах: 0,3*3=0,9 дб
Потери в волокне (3км) + затухание на 1 сварном шве: 0,2*3+0,04=0,64
Максимальное количество участков по 3 км: (26дБ-0,9дБ)/(0,64 дБ)=39,68
Максимальная длина линии: 39*3=117 км.
4Программное обеспечение цск
4.1 Состав системы коммутационных программ. Граф установления соединений. Процесс последовательности этапов обслуживания вызовов, последовательности этапов установления соединения.
См.раздатку
Состав системы коммутационных программ определяется количеством и функциональным содержанием этапов обслуживания вызова для всех видов соединений, предусмотренных на данной коммутационной станции, т.е. суммарным количеством ребер в графах установления этих видов соединений. Объединенный граф может содержать большое количество вершин ребер, что требует большого объема памяти для хранения соответствующего числа программ. Уменьшение количества программ, и, как следствие, требуемого объема памяти, достигается путем минимизации объединенного графа. Коммутационные программы, выделенные в результате анализа минимизированного графа, обладают большим функциональным разнообразием, однако имеют достаточно близкую друг к другу структуру, которая является отражением структуры этапов обслуживания вызова.
Каждый этап может быть разделен на три фазы (раздатка):
-фазу приема входного сигнала (обнаружения события);
-фазу обработки полученного сигнала, выбора внутреннего состояния и формирования соответствующего выходного сигнала (принятие решения);
-фазу выдачи выходного сигнала перевода коммутационного оборудования (объекта
управления) в новое состояние.
Программные компоненты разныхкоммутационных программ выделяются в самостоятельные программы:
-приема информации (обнаружения событий);
-обработки информации (принятия решения);
-выдачи информации (последовательности периферийных команд).
В этом случае на каждом этапе обслуживания вызова выполняется несколько программ, которые работают во времени независимо друг от друга. Взаимосвязь программ обеспечивается с помощью заявок, формируемых одной программой на выполнение следующей программы. Общее взаимодействие и очередность выполнения программ из каждого вида обеспечивается средствами диспетчеризации (операционная система).
Началу обслуживания вызова на любом этапе всегда предшествует выполнение программ приема сигналов (программ сканирования) о состоянии контрольных точек приборов, которые поступают от коммутационного оборудования. Всякое изменения состояния опрашиваемых контрольных точек воспринимается как заявка на выполнение определенного этапа обслуживания вызова. Заявки накапливаются в буфере. Обслуживание заявки начинается с момента выборки её из буфера. Программы обработки информации выполняют все функции, предусмотренные текущим этапом обслуживания вызова. Для реализации функций используются данные массивов состояния оборудования, справочные данные. После окончания работы программ обработки начинают работу программы формирования управляющих воздействий – последовательности периферийных команд, которые накапливаются в буфере. Выдачей команд из буфера управляют программы выдачи информации. На этом текущий этап обслуживания вызова заканчивается, а данные об устойчивом состоянии фиксируются в специальной области памяти – регистре вызова.
Для описания процесса установления соединения используется граф переходов конечного автомата, в котором специфика того или иного вида соединения отражается в наборе вершин и конфигурации дуг (ребер) между ними.
Этап установления соединения еi – совокупность состояний Si и выходных сигналов zi автомата в этих состояниях;
Этапобслуживания вызова Eik – последовательность действий, выполняемых ЭУС для перевода коммутационной станции от этапа установления соединения еi к этапу еk при поступлении входного сигнала xi.
Граф, вершинами которого является этапы установления, а ребрами – этапы обслуживания вызова, называется графом установления соединения.
ОС – сигнал ОТВЕТ СТАНЦИИ
Тракт ПН – тракт приема номера
Тракт ПВ и КПВ – тракты подачи сигналов ПОСЫЛКИ ВЫЗОВА и КОНТРОЛЬ ПОСЫЛКИ ВЫЗОВА
Тракт СЗ – тракт подачи СИГНАЛА ЗАНЯТО
Этапы установления соединения:
е0 |
АК свободен |
е1 |
Посылка сигнала «ОС» (тракт приема номера проключен) |
е2 |
Прием и анализ адресной информации |
е3 |
Посылка сигналов ПВ и КПВ |
е4 |
Разговор |
е5 |
Подача сигнала «Занято» абоненту Б |
е6 |
Подача сигнала «Занято» абоненту А |
х0 |
Вызов абонентом А станции (шлейф замкнут) |
х1 |
Отбой абонента А (шлейф разомкнут) |
х2 |
Первый импульс (первая цифра) |
х3 |
Последний импульс (последняя цифра), абонент Б свободен |
х4 |
Ответ абонента Б (шлейф замкнут) |
х5 |
Отбой абонента Б (шлейф разомкнут) |
Переход от одного этапа установления соединения к другому выполняется после фиксации соответствующего входного сигнала через этап обслуживания вызова:
Е01 |
Проключение тракта подачи сигнала «Ответ станции» |
Е10 |
Разрушение тракта подачи сигнала «Ответ станции» |
Е12 |
Проключение тракта приема номера |
Е20 |
Разрушение тракта прима номера |
Е23 |
Проключение тракта посылки вызова |
Е30 |
Разрушение тракта посылки вызова |
Е34 |
Проключение разговорного тракта |
Е45 |
Проключение тракта подачи сигнала «Занято» абоненту Б |
Е50 |
Разрушение тракта подачи сигнала «Занято» абоненту Б |
Е46 |
Проключение тракта подачи сигнала «Занято» абоненту А |
Е60 |
Разрушение тракта подачи сигнала «Занято» абоненту А |
Таким образом, процесс установления любого вида соединения и процесс обслуживания соответствующего вызова имеют многоэтапный характер, причем этапы отделены во времени один от другого некоторыми промежутками, длительность которых определяется длительностью этапов обслуживания вызовов или этапов установления соединения.
