- •Билет №1
- •Билет №2
- •Билет №3
- •Билет №4
- •Проверка пк
- •Билет №5
- •Симптомы переломов конечностей
- •Первая медицинская помощь при закрытом переломе
- •Первая медицинская помощь при открытом переломе
- •Вводный инструктаж
- •Первичный инструктаж
- •Журналы учета
- •Краткая программа
- •Билет №6
- •Противопожарные тренировки.
- •Билет № 7
- •Предохранитель пк:
- •Патрон предохранителя пр-2:
- •Билет № 8
- •Классификация
- •Типы утопления можно разделить в основном на три категории.
- •Признаки утопления по их типам
- •Правила оказания первой помощи
- •Билет № 9
- •Выключатели нагрузки
- •Разъединители
- •Пересечение и сближение вл с железными дорогами
- •Пересечение и сближение вл с автомобильными дорогами
- •Наименьшие расстояния при пересечении и сближении вл с автомобильными дорогами
- •Закон Ома для замкнутой цепи.
- •Раздел 5, Глава 5
- •По назначению защитные средства разделяются на:
- •Изолирующие средства по назначению подразделяются на:
- •Билет № 10
- •Принцип работы агрегата на постоянном токе
- •Как работает асинхронный электромотор
- •Как работает синхронный электрический двигатель переменного тока
- •Самые частые поломки синхронных двигателей:
- •Принцип работы синхронного мотора
- •Охрана труда машиниста бурильно-крановой установки
- •Общие требования безопасности
- •Требования безопасности перед началом работ
- •Требования безопасности тракториста во время работы
- •4. Требования безопасности в аварийной ситуации
- •Требования безопасности машиниста по окончании работы
- •Билет №11
- •Проверка отсутствия напряжения
- •Билет №12
- •Нормы испытаний вентильных разрядников, находящихся в эксплуатации
- •Измерение сопротивления элемента разрядника.
- •Измерение сопротивления имитатора.
- •Измерение сопротивления изоляции изолирующих оснований разрядников с регистраторами срабатываний.
- •Измерение тока проводимости (тока утечки).
- •Измерение пробивных напряжений при промышленной частоте.
- •Проверка герметичности разрядников.
Проверка пк
Помимо испытаний на стендах необходимо проводить ВПВ два раза в год. Методика испытаний на водоотдачу заключается в следующем:
Испытания проводятся в период наименьшего напора воды в здании.
Одновременно включается большое количество пожарных кранов. Их число указывается в СНиП 2.04.01-85.
Расход диктующего ПК является определяющим, и он указывается в нормативных документах. Обычно показания берутся у самого высшего или отдаленного пожарного крана.
Испытание считается успешным, если давление клапана, расход воды и высота компактной струи соответствуют минимальным показателям.
Расчет диафрагмы перед ПК проводится в зависимости от защищаемого здания и может соответствовать одному из типоразмеров 13, 16 или 19 мм. Требования регламентируются в НПБ 177-99. Диафрагма для пожарного крана с центральным отверстием должна создавать необходимый напор струи при тушении.
Периодичность проверки технического состояния внутренних ПК определяется самостоятельно, но не реже двух раз в год при отсутствии заморозков.
Билет №5
1 – Устройство изоляторов и их назначение :
По своему назначению изоляторы делятся на опорные, подвесные и проходные. Опорные изоляторы в свою очередь подразделяются на стержневые и штыревые, а подвесные - на тарельчатые и стержневые. Опорно-стержневые изоляторы применяют в ЗРУ и ОРУ для крепления на них токоведущих шин или контактных деталей. Опорно-стержневые изоляторы наружной установки отличаются большим количеством ребер, чем изоляторы внутренней установки. Ребра служат для увеличения длины пути тока утечки с целью повышения разрядных напряжений изоляторов под дождем и в условиях увлажненных загрязнений. Обозначение, например, ОСН-35-2000 расшифровывается следующим образом: опорный, наружной установки, стержневой на 35 кВ, с минимальной разрушающей силой 2000 даН. Опорно-штыревые изоляторы применяют для наружных установок в тех случаях, когда требуется высокая механическая прочность. В установках напряжением 110 кВ и выше используются колонки, состоящие из нескольких, установленных друг на друга опорно-штыревых изоляторов на напряжение 35 кВ. В обозначение изоляторов введена буква Ш (штыревой). Штыревые линейные изоляторы применяются на напряжения 6-10 кВ. Обозначение ШФ6 означает: штыревой фарфоровый на 6 кВ. Буква С в обозначении (ШС) указывает на то, что изолятор стеклянный. Подвесные изоляторы тарельчатого типа используются на воздушных ЛЭП 35 кВ и выше. Требуемый уровень выдерживаемых напряжений достигается соединением необходимого числа изоляторов в гирлянду. Гирлянды благодаря шарнирному соединению изоляторов работают только на растяжение. Однако изоляторы сконструированы так, что внешнее растягивающее усилие создает в изоляционном теле в основном напряжения сжатия. Так используется высокая прочность фарфора и стекла на сжатие.
Подвесные стержневые изоляторы, как правило, выполняются из электротехнического фарфора. Однако в настоящее время выпускаются и стержневые полимерные изоляторы. Проходные изоляторы применяются для изоляции токоведущих частей при прохождении их через стены, потолки и другие элементы конструкций РУ и аппаратов. Проходные изоляторы, предназначенные для наружной установки, имеют более развитую поверхность той части изолятора, которая располагается вне помещения. Обозначение проходного изолятора содержит значение номинального тока, например ПНШ-35/3000-2000 означает: проходной, наружной установки, шинный на напряжение 35 кВ и номинальный ток 3 кА с механической прочностью 20 кН. Проходные аппаратные изоляторы (вводы) на напряжение 110 кВ и выше имеют значительно более сложную конструкцию.
2 – Пересечение и сближение ВЛ между собой :
2.5.118. Угол пересечения ВЛ выше 1 кВ между собой и с ВЛ до 1 кВ не нормируется.
Место пересечения должно выбираться возможно ближе к опоре верхней (пересекающей) ВЛ; при этом, однако, расстояние по горизонтали от этой опоры до проводов нижней (пересекаемой) ВЛ при наибольшем отклонении проводов должно быть не менее 6 м, а от опор нижней (пересекаемой) ВЛ до проводов верхней (пересекающей) ВЛ - не менее 5 м. Для анкерных опор ВЛ 500 кВ указанные расстояния должны быть не менее 10 м (см. также 2.5.121).
Допускается в отдельных случаях выполнение пересечений ВЛ на опоре.
2.5.119. При пересечениях ВЛ 330-500 кВ между собой опоры пересекающей ВЛ должны быть анкерными нормальной конструкции. Пересечения ВЛ 330-500 кВ с ВЛ 220 кВ и ниже допускается выполнять на промежуточных опорах.
При сооружении ВЛ 300 кВ и ниже допускается прохождение их под действующими ВЛ 330-500 кВ в пролетах, ограниченных промежуточными опорами.
При пересечениях ВЛ 220 кВ и ниже между собой допускается применение на пересекающей ВЛ промежуточных опор.
Одностоечные деревянные опоры пересекающей ВЛ, ограничивающие пролет пересечения, должны быть с железобетонными приставками; допускается применение одностоечных деревянных опор без приставок. Повышенные деревянные опоры допускается применять как исключение с деревянными приставками.
Провода
пересекающей ВЛ на промежуточных опорах
пролета пересечения должны иметь глухие
зажимы или двойные крепления на штыревых
изоляторах; при сечении провода 300 мм
и
более допускается применение зажимов
с ограниченной прочностью заделки и
оставление выпадающих зажимов на
существующей ВЛ при сооружении под ней
другой ВЛ.
2.5.120. Провода ВЛ более высокого напряжения, как правило, должны быть расположены над проводами ВЛ более низкого напряжения. Допускается как исключение прохождение ВЛ 35 кВ и выше с сечением проводов 120 мм и более над проводами ВЛ более высокого напряжения, но не выше 220 кВ.
Таблица 2.5.24. Наименьшее расстояние между проводами или между проводами и тросами пересекающихся ВЛ на металлических и железобетонных опорах, а также на деревянных опорах при наличии грозозащитных устройств
Длина пролета |
Наименьшее расстояние, м, при расстоянии от места пересечения до ближайшей опоры ВЛ, м |
|||||
ВЛ, м |
30 |
50 |
70 |
100 |
120 |
150 |
При пересечении ВЛ 500-330 кВ между собой и с ВЛ более низкого напряжения |
||||||
До 200 |
5 |
5 |
5 |
5,5 |
- |
- |
300 |
5 |
5 |
5,5 |
6 |
6,5 |
7 |
450 |
5 |
5,5 |
6 |
7 |
7,5 |
8 |
При пересечении ВЛ 220-150 кВ между собой и с ВЛ более низкого напряжения |
||||||
До 220 |
4 |
4 |
4 |
4 |
- |
- |
300 |
4 |
4 |
4 |
4,5 |
5 |
5,5 |
450 |
4 |
4 |
5 |
6 |
6,5 |
7 |
При пересечении ВЛ 110-20 кВ между собой и с ВЛ более низкого напряжения |
||||||
До 220 |
3 |
3 |
3 |
4 |
- |
- |
300 |
3 |
3 |
4 |
4,5 |
4 |
- |
При пересечении ВЛ 10 кВ между собой и с ВЛ более низкого напряжения |
||||||
До 100 |
2 |
2 |
- |
- |
- |
- |
150 |
2 |
2,5 |
2,5 |
- |
- |
- |
2.5.121. Расстояния между ближайшими проводами и тросами пересекающихся ВЛ на металлических и железобетонных опорах, а также на деревянных опорах при наличии грозозащитных устройств при температуре окружающего воздуха плюс 15°С без ветра должны быть не менее приведенных в табл. 2.5.24.
При определении расстояний между проводами пересекающихся ВЛ следует учитывать возможность поражения молнией обеих ВЛ и принимать расстояния для более неблагоприятного случая. Если верхняя ВЛ защищена тросами, то учитывается возможность поражения только нижней ВЛ.
Допускается сохранение опор пересекаемых ВЛ до 110 кВ под проводами пересекающих ВЛ, если расстояние по вертикали от проводов пересекающей ВЛ до верха опоры пересекаемой ВЛ на 4 м больше значений, приведенных в табл. 2.5.24.
2.5.122. На ВЛ с деревянными опорами, не защищенных тросами, на опорах, ограничивающих пролеты пересечения, должны устанавливаться трубчатые разрядники на обеих пересекающихся ВЛ.
На ВЛ 35 кВ и ниже допускается применять вместо трубчатых разрядников защитные промежутки. При этом для ВЛ должно быть предусмотрено автоматическое повторное включение. Защитные промежутки на одностоечных и А-образных опорах с деревянными траверсами выполняются в виде одного заземляющего спуска и заканчиваются бандажами на расстоянии 75 см (по дереву) от точки крепления нижнего изолятора. На П- и АП-образных опорах заземляющие спуски прокладываются по стойкам П-образной грани опоры до траверсы.
Если расстояние от места пересечения до ближайших опор пересекающихся ВЛ составляет не более 40 м, разрядники или защитные промежутки устанавливаются только на ближайших опорах.
Таблица 2.5.25. Наименьшее расстояние по горизонтали между ВЛ
Участки ВЛ и расстояния |
Наименьшее расстояние, м, при напряжении ВЛ, кВ |
||||||
|
до 20 |
35 |
110 |
150 |
220 |
330 |
500 |
Участки нестесненной трассы, между осями ВЛ |
Высота наиболее высокой опоры* |
||||||
________________ *При сближении ВЛ 500 кВ между собой и с ВЛ более низких напряжений - высота наиболее высокой опоры, но не менее 50 м. |
|||||||
Участки стесненной трассы и подходы к подстанциям: |
|
|
|
|
|
|
|
между крайними проводами в неотклоненном положении |
2,5 |
4 |
5 |
6 |
7 |
10 |
15 |
от отклоненных проводов одной ВЛ до опор другой ВЛ |
2 |
4 |
4 |
5 |
б |
8 |
10 |
Установка трубчатых разрядников и защитных промежутков не требуется для:
ВЛ с металлическими и железобетонными опорами;
ВЛ с деревянными опорами при расстояниях между проводами ВЛ, пересекающихся между собой и с ВЛ более низких напряжений, не менее: 7 м при напряжении 33-500 кВ, 6 м при напряжении 150-220 кВ, 5 м при напряжении 35-110 кВ, 4 м при напряжении 3-20 кВ.
Сопротивления заземляющих устройств для трубчатых разрядников и защитных промежутков должны быть не более указанных в табл. 2.5.21.
2.5.123. При параллельном прохождении и сближении ВЛ расстояния по горизонтали должны быть не менее указанных в табл. 2.5.25.
3 – Источники Электродвижущей силы ( ЭДС ) :
Источники тока и напряжения
В теории цепей для представления источников электрической энергии используют две модели: идеальные источники напряжения и идеальные источники тока. С их помощью посредством схем замещения описывают реальные источники электрической энергии.
Идеальные источники напряжения (источники ЭДС)
Идеальный источник напряжения (синонимы — источник ЭДС, генератор ЭДС) представляет собой активный двухполюсник, вырабатывающий напряжение, которое не зависит от тока, протекающего через этот двухполюсник. ЭДС — аббревиатура термина электродвижущая сила. В теории цепей рассматривают источники постоянной ЭДС и источники переменной ЭДС, изменяющейся во времени по определенному закону. Источник ЭДС и его вольтамперная характеристика (ВАХ) показаны на рис. 1.13, а, б. На электрических схемах цепей с гальваническими элементами (батарейками, аккумуляторами) обычно используют особые обозначения для источников постоянной ЭДС (рис. 1.13, в). Если знаки «плюс» и «минус» около полюсов такого элемента не расставлены, следует считать, что электрод, обозначенный длинной полосой, имеет более высокий («плюсовой») потенциал.
|
|
|
|
Напряжение между полюсами идеального источника напряжения появляется вследствие действия сторонней силы, которая переносит заряды внутри источника. Причем положительные заряды движутся от полюса с меньшим потенциалом к полюсу с большим потенциалом — от «минуса» к «плюсу». Отрицательные заряды движутся в обратном направлении. В условном обозначении источника ЭДС присутствует стрелка. Она играет роль опорного (условного положительного) направления для источника ЭДС. Условились считать, что электродвижущая сила направлена туда, куда движутся внутри источника положительные заряды, — от «минуса» к «плюсу». Во внешней цепи ток положительных зарядов направлен от вывода «плюс» источника ЭДС к выводу «минус». Перемещение единичного положительного заряда по цепи между этими полюсами сопровождается выполнением работы, численно равной напряжению, которое отсчитывается от «плюса» к «минусу». Такую же работу совершает внутри источника электродвижущая сила. Если направления отсчета напряжения и ЭДС выбраны так, как показано на рис. 1.13, а (стрелки направлены противоположно), то:
u(t) = e(t).
Если стрелки для ЭДС и напряжения на источнике направлены в одну сторону, следует пользоваться равенством:
u(t) = -e(t).
|
|
|
|
А для мгновенной мощности ре источника ЭДС имеем:
При любом выборе опорных направлений ЭДС и напряжения расчет мгновенной мощности показывает, что для источника ЭДС она отрицательна (энергия отдается), а для подключенной к нему внешней цепи (например, для сопротивления R/ на рис. 1.13, а) — положительна. Действительно, при выбранных на рисунке направлениях тока и напряжения для мгновенной мощности pR на сопротивлении R, получается:
|
|
|
|
Так и должно быть — энергия, полученная за определенный интервал времени цепью, подключенной к источнику, должна равняться энергии, отданной в эту цепь сторонними силами.
4 – Установка переносных заземлений на ВЛ 0.4-10кВ :
4.7.1. ВЛ напряжением выше 1000 В заземляются во всех РУ и у секционирующих коммутационных аппаратов, где отключена линия. Допускается: ВЛ напряжением 35 кВ и выше с отпайками не заземлять на отпаечных подстанциях при условии, что линия заземлена с двух концов, а на этих подстанциях заземления установлены за отключенными линейными разъединителями (со стороны подстанции); ВЛ напряжением от 6 до 20 кВ заземлять только в одном РУ или у одного секционирующего аппарата, либо на ближайшей к РУ или этому секционирующему аппарату опоре. В остальных РУ этого напряжения и у секционирующих коммутационных аппаратов, где ВЛ отключена, допускается ее не заземлять при условии, что на ВЛ будут наложены заземления между рабочим местом и этим РУ или секционирующими коммутационными аппаратами. На ВЛ указанные заземления следует устанавливать на опорах, имеющих заземляющие устройства; на ВЛ напряжением до 1000 В достаточно установить заземление только на рабочем месте. 4.7.2. При пофазном ремонте ВЛ заземлять в РУ провод отключенной фазы запрещается. 4.7.3. Дополнительно к заземлениям, указанным в пункте 4.7.1 настоящих Правил, на рабочем месте каждой бригады заземляются провода всех фаз, а при необходимости и тросы. 4.7.4. На одноцепных ВЛ заземление на рабочем месте необходимо устанавливать на опоре, на которой производится работа, или на соседней. Допускается установка заземлений с двух сторон участка ВЛ, на котором работает бригада, при условии, что расстояние между заземлениями не превышает 2 км. 4.7.5. При выполнении работы на проводах ВЛ в пролете пересечения с другой ВЛ, находящейся под напряжением, заземление необходимо устанавливать на опоре, где производится работа. Если в этом пролете подвешиваются или заменяются провода либо тросы, то с обеих сторон от места пересечения заземляются как подвешиваемый, так и заменяемый провод (трос). 4.7.6. При работе на изолированном от опоры молниезащитном тросе или на конструкциях опоры, когда требуется приближение к этому тросу на расстояние менее 1,0 м, трос заземляется. Заземление нужно устанавливать в сторону пролета, где трос изолирован, или в этом пролете. Если на этом тросе предусмотрена плавка гололеда, перед началом работы трос должен быть отключен и заземлен с тех сторон, откуда на него может быть подано напряжение. 4.7.7. Перед разрывом электрической цепи на рабочем месте (рассоединение проводов, тросов, отключение секционирующего разъединителя) заземление устанавливается по обе стороны разрыва. 4.7.8. Переносные заземления следует присоединять: на металлических опорах к их элементам, на железобетонных и деревянных опорах с заземляющими спусками к этим спускам после проверки их целости. на железобетонных опорах допускается присоединять переносное заземление к арматуре или к металлическим элементам опоры, имеющим металлическую связь с арматурой. В электросетях напряжением до 1000 В с заземленной нейтралью при наличии повторного заземления нулевого провода допускается присоединять переносные заземления к нулевому проводу. места присоединения переносных заземлений к заземляющим проводникам или к конструкциям должны быть очищены. на деревянных опорах, не имеющих заземляющих устройств, переносное заземление на рабочем месте можно присоединить к специальному заземлителю, погруженному в грунт на глубину не менее 0,5 м, или в зависимости от местных условий к заземлителям других типов. 4.7.9. На ВЛ напряжением до 1000 В при работах, выполняемых с опор либо с телескопической вышки без изолирующего звена, заземление устанавливается как на провода ремонтируемой линии, так и на все подвешенные на этих опорах неизолированные провода, в том числе на провода связи, радиотрансляции и телемеханики. 4.7.10. На ВЛ при подвеске проводов на разных уровнях заземление устанавливается снизу вверх, начиная с нижнего провода, а при горизонтальной подвеске начиная с ближайшего провода. 4.7.11. При выполняемых с опор работах на проводах (тросах) ВЛ, проходящей в зоне наведенного напряжения, или на отключенной цепи многоцепной ВЛ, остальные цепи которой находятся под напряжением, заземление устанавливается на каждой опоре, где производится работа. 4.7.12. В зоне наведенного напряжения при работе на проводах (тросах), выполняемой с не имеющих изолирующей секции телескопической вышки или другого механизма для подъема людей, их рабочие площадки соединяются посредством переносного заземления с проводом (тросом), а сама вышка или механизм заземляются. Провод (трос) при этом должен быть заземлен на ближайшей опоре. 4.7.13. На ВЛ устанавливать переносные заземления и включать заземляющие ножи должны два оперативных работника (оперативно-ремонтные), один из которых руководитель работ с группой IV на ВЛ напряжением выше 1000 В и с группой III на ВЛ напряжением до 1000 В, а второй работник член бригады, имеющий группу III. Снимать переносные заземления допускается двум работникам, имеющим группу III. при установке и снятии заземлений один из двух работников, выполняющих эти операции, должен оставаться на земле и вести наблюдение за другим. Отключать заземляющие ножи разрешается одному лицу с группой III из состава оперативных или оперативно-ремонтных работников.
5 – Назначение и конструкция защитных ограждений :
Защитные ограждения включают:
- ограждения, предназначенные не допустить человека в опасную зону;
- ограждения для защиты человека от опасных выделений (выбросов, осколков, стружки и т.д.).
Основные требования к ограждениям: во-первых, соответствие размеров ограждения размерам зоны; во-вторых, прочность ограждений должна соответствовать возможным нагрузкам.
Ограждения бывают стационарными, подвижными, открывающимися на время вспомогательных операций, когда отсутствует опасность. Вращающиеся части станков закрываются глухими кожухами, прикрепленными к станку. Кожуха на сменных зубчатых передачах делаются откидными. Передачи (цепные, зубчатые и др.), расположенные вне корпуса станка, оборудуются ограждением.
Зона обработки ограждается экранами для защиты работающих от разлетающейся стружки. Защитные устройства, удаляемые при смене инструмента, детали и т.п., должны иметь массу не более 6 кг, а крепление – не требовать применения ключей, отверток. Усилие перемещения защитного устройства не должно превышать 40 Н.
Ограждения выполняются в виде сварных или литых кожухов, сплошных экранов (щитков), решеток. Размер ячеек решеток определяется зависимостью а = b/(6÷5), где b – расстояние в мм от ограждения до опасной зоны. При необходимости наблюдать за процессом обработки ограждение снабжают смотровым окном.
6 – Виды переломов. Оказание первой помощи при переломах костей конечностей :
Виды переломов:
Поперечные;
Винтовые;
Винтообразные;
Косые;
Оскольчатые
Продольные;
Раздробленные.
Выделяют 2 типа переломов относительно целостности кожных покровов:
закрытый – характеризуется повреждением костных структур без нарушения целостности кожи;
открытый – характеризуется нарушением целостности кости и сопровождается ранением мягких тканей, которые сообщаются с внешней средой.
Классификация переломов согласно тяжести поражения:
неполные (наблюдаются трещины и надломы);
полные (без смещения и со смещением костных отломков).
Особого внимания заслуживает группа травматических поражений, которые включают в себя внутрисуставные переломы. Они затрагивают шейки и головки костей нижних и верхних конечностей.
Во время оказания первой помощи человек должен быть предельно внимательным и осторожным. Необходимо руководствоваться основным принципом – не навредить. Для того, чтобы не причинить вред необходимо следовать четкому плану и не пытаться вернуть отломки в физиологическое положение. Особенно это относится к переломам ребер и позвоночника.
