- •Билет №1
- •Билет №2
- •Билет №3
- •Билет №4
- •Проверка пк
- •Билет №5
- •Симптомы переломов конечностей
- •Первая медицинская помощь при закрытом переломе
- •Первая медицинская помощь при открытом переломе
- •Вводный инструктаж
- •Первичный инструктаж
- •Журналы учета
- •Краткая программа
- •Билет №6
- •Противопожарные тренировки.
- •Билет № 7
- •Предохранитель пк:
- •Патрон предохранителя пр-2:
- •Билет № 8
- •Классификация
- •Типы утопления можно разделить в основном на три категории.
- •Признаки утопления по их типам
- •Правила оказания первой помощи
- •Билет № 9
- •Выключатели нагрузки
- •Разъединители
- •Пересечение и сближение вл с железными дорогами
- •Пересечение и сближение вл с автомобильными дорогами
- •Наименьшие расстояния при пересечении и сближении вл с автомобильными дорогами
- •Закон Ома для замкнутой цепи.
- •Раздел 5, Глава 5
- •По назначению защитные средства разделяются на:
- •Изолирующие средства по назначению подразделяются на:
- •Билет № 10
- •Принцип работы агрегата на постоянном токе
- •Как работает асинхронный электромотор
- •Как работает синхронный электрический двигатель переменного тока
- •Самые частые поломки синхронных двигателей:
- •Принцип работы синхронного мотора
- •Охрана труда машиниста бурильно-крановой установки
- •Общие требования безопасности
- •Требования безопасности перед началом работ
- •Требования безопасности тракториста во время работы
- •4. Требования безопасности в аварийной ситуации
- •Требования безопасности машиниста по окончании работы
- •Билет №11
- •Проверка отсутствия напряжения
- •Билет №12
- •Нормы испытаний вентильных разрядников, находящихся в эксплуатации
- •Измерение сопротивления элемента разрядника.
- •Измерение сопротивления имитатора.
- •Измерение сопротивления изоляции изолирующих оснований разрядников с регистраторами срабатываний.
- •Измерение тока проводимости (тока утечки).
- •Измерение пробивных напряжений при промышленной частоте.
- •Проверка герметичности разрядников.
Принцип работы агрегата на постоянном токе
Этот тип электромотора работает на основе принципа, разработанного Майклом Фарадеем в далеком 1821 году. Его открытие заключается в том, что при взаимодействии электрического импульса с магнитом есть вероятность возникновения постоянного вращения. То есть, если в магнитном поле разметить вертикальную рамку и пропустить по ней электрический ток, то вокруг проводника может возникнуть электромагнитное поле. Оно будет непосредственно контактировать с полюсами магнитов. Получается, что к одному из магнитов рамка будет притягиваться, а от другого отталкиваться. Соответственно, она повернется из вертикального положения в горизонтальное, в котором влияние магнитного поля на проводник будет нулевым. Получается, что для продолжения движения нужно будет дополнить конструкцию еще одной рамкой под углом или же поменять направление тока в первой рамке. В большинстве приборов это достигается за счет двух полуколец, к которым присоединяются контактные пластинки от аккумулятора. Они способствуют быстрому изменению полярности, в результате чего движение продолжается.
Современные электромоторы не имеют постоянных магнитов, так как их место занимаю электрические магниты и катушки индуктивности. То есть, если вы разберете любой такой двигатель, то увидите витки проволоки, покрытые изоляционным составом. По сути, они и представляют собой электромагнит, который еще называется обмоткой возбуждения. Постоянные магниты в конструкции электродвигателей применяются только в небольших детских игрушках, работающих от пальчиковых батареек. Все остальные более мощные электродвигатели оснащаются только электрическими магнитами или же обмотками. При этом, вращающаяся деталь получила название ротор, а статичная - статор.
Как работает асинхронный электромотор
Корпус асинхронного двигателя вмещает в себя обмотки статора, благодаря которым и создается вращающееся поле магнита. Концы для подключения обмоток выводят через специальную клеммную колодку. Охлаждение осуществляется за счет вентилятора, размещенного на вале в торце электрического двигателя. Ротор плотно соединен с валом, изготовленным из металлических стержней. Эти короткозамкнутые стержни замыкаются между собой с обеих сторон. За счет такой конструкции, двигатель не нуждается в периодическом обслуживании, так как здесь нет необходимости время от времени менять токоподающие щетки. Именно поэтому, асинхронные моторы считаются более надежными и долговечными, чем синхронные. В основном причиной поломки асинхронных двигателей является изнашивание подшипников, на которых осуществляется вращение вала.
Для работы асинхронных двигателей необходимо, чтобы вращение ротора осуществлялось медленнее, чем вращение электромагнитного поля статора. Именно за счет этого в роторе и возникает электрический ток. Если бы вращение осуществлялось с одинаковой скоростью, то по закону индукции ЭДС не образовывалось бы, и отсутсвовало вращение в целом. Однако, в настоящей жизни за счет трения подшипников и повышенной нагрузки на вал ротор будет крутиться медленнее. Магнитные полюса регулярно вращаются в обмотках ротора, за счет чего постоянно изменяется направление тока в роторе.
По этому же принципу работает и круговая пила, так как наибольшие обороты она набирает без нагрузки. Когда пила начинает резать доску, ее скорость вращения снижается и одновременно ротор начинает вращаться медленнее по отношению к электромагнитному полю. Соответственно, по законам электротехники в нем начинает возникать еще большая величина ЭДС. После этого возрастает потребляемый мотором ток и он начинает работу на полной мощности. При нагрузке, при которой мотор застопорится, может возникнуть разрушение короткозамкнутого ротора. Это возникает из-за того, что в двигателе возникает максимальная величина ЭДС. Именно поэтому необходимо подбирать электромотор необходимой мощности. Если взять двигатель слишком большой мощности, то это может привести к неоправданным затратам энергии.
Скорость, с которой вращается ротор, в данном случае зависит от количества полюсов. Если в устройстве имеется два полюса, то скорость вращения будет соответствовать скорости вращения магнитного поля. Максимально асинхронный электрический двигатель может развивать до 3 тысяч оборотов в секунду. Частота сети при этом может составлять до 50 Гц. Для уменьшения скорости в два раза вам придется повысить количество полюсов в статоре до 4 и так далее. Единственный недостаток асинхронных моторов - это то, что они могут поддаваться регулировке скорости вращения вала только посредством изменения частоты электрического тока. Кроме того, в асинхронном моторе вы не сможете добиться постоянной частоты вращения вала.
