Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Щелоков М.А. Реферат (Мемристоры – технологии, которые могут изменить мир).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.32 Mб
Скачать

Содержание

1 Введение 3

2 Теоретическое обоснование мемристора 5

3 Критика исследований 6

4 Обзор материалов с эффектом памяти 7

5 Применение мемристоров 10

6 Заключение 15

7 Список литературы 16

1 Введение

Появление такого научного термина как мемристор произошло ещё в 1971 году благодаря научным работам Леона Чуа (рисунок 1) [13]. Он родился в 1936 году как Цай Шаотан на Филиппинах в среде этнических китайцев. Вырос Леон там же, в условиях японской оккупации, и лишь на рубеже 1950-60 годов он сумел перебраться в США, где стал в итоге весьма известным и авторитетным ученым, профессором Калифорнийского университета в Беркли.

Рисунок 1 – Профессор Леон Чуа

Дмитрий Иванович Менделеев использовал философские принципы при создание знаменитой таблицы элементов (закон перехода количества в качество одни из законов диалектики), также и Леон Чуа опирался на философские идеи хотел оригинально перенести в сугубо прикладную теорию электросхем идею о красоте математических симметрий, в ту пору уже доминировавшую в фундаментальной теории физики частиц. На этой основе Чуа предсказал существование нового, в ту пору неизвестного базового элемента, который он назвал «мемристор», то есть резистор с памятью, и в целом описал его предполагаемые свойства.

Поскольку оригинальная идея Чуа в 1970-е годы не нашла никакого практического применения, ее восприняли и тут же сбросили со счетов, как красивую математическую фантазию, не более того.

Начиная ещё с середины 1980-х, многие исследователи предлагали различные способы построения структур, подобных мемристорам, но всегда что-то мешало воплотить эти предложения в жизнь.

И вот в 2008 году коллектив учёных центра Hewlett Packard Labs под руководством Стэнли Уильямса, проводя эксперименты с миниатюризацией и изучая работу электронных узлов и цепей, уменьшенных до наномасштабов, столкнулся с крайне странными явлениями [13]. Поиски причин оказались непростыми, однако в итоге один из сотрудников нашел в архивах публикацию Леона Чуа. И в итоге оказалось, что ученые создали первый лабораторный образец запоминающего элемента, демонстрирующего некоторые свойства мемристора.

Рисунок 2 – Стэнли Уильямс

На основании тех исследований стало ясно, что мемристор может быть использован в качестве ячейки памяти. Изначально сообщалось, что накопители на базе мемристоров выйдут в 2013 году, но затем выпуск был перенесён на 2016 год.

В 2014 году HP опубликовала проект суперкомпьютера The Machine [5]. Первые компоненты проекта будут продемонстрированы в 2015 и 2016 годах, коммерциализация технологии ожидается до конца 2020-х.

2 Теоретическое обоснование мемристора

Чтобы как можно полнее раскрыть сущность практических применений мемристора необходимо разобраться на основании, каких физических и математических законов он функционирует. В этом смысле в первую очередь следует обратиться к тому самому принципу симметрии, о котором писал Леон Чуа [1, 2, 9, 10]. Наиболее наглядно данный принцип может быть представлен графически (рисунок 3).

Рисунок 3 – Симметрия резистора, индуктора, конденсатора и мемристора;

Чуа исходил из того, что должны быть соотношения, связывающие все четыре основные переменные электрических цепей: ток i, напряжение v, заряд q и магнитный поток Φ [1, 2, 9, 10]. Всего таких соотношений может быть шесть. Пять из них хорошо известны. Заряд – это интеграл по времени от тока. Связь между напряжением и магнитным потоком определяется через закон электромагнитной индукции Фарадея. Напряжение и ток связаны через сопротивление R, заряд и напряжение – через емкость C, а магнитный поток и ток – через индуктивность L. Отсутствует шестое соотношение, связывающее поток и заряд. Чуа предположил, что эти величины связаны через "отсутствующий" элемент – мемристор, обладающий "мемристивностью". Данное утверждение нашло своё отражение в формуле (1):

, где (1)

где Φm – магнитное потокосцепление, обобщенное из токовых характеристик индуктивности, в связи с отсутвием магнитного поля как такового, может рассматриваться как интеграл от напряжения по времени;

M(q) – мемристивность, показатель, которым характеризуется любой мемристор, она связывает скорости изменения потока и заряда, в общем случае зависит от q, т.е. заряда.