- •Стереохимия циклических соединений
- •2.Электронное строение органических соединений, σ - и π- связи, π-π и р-π сопряжение. Сопряженные системы с открытой цепью. Индуктивный (I) и мезомерный (м) эффекты.
- •4. Углеводороды предельные и непредельные. Диеновые углеводороды. Sp3-, sp2-и sp- гибридизация атомных орбиталей углерода. Реакционная способность предельных и непредельных углеводородов.
- •5. Ароматичность, критерии ароматичности, энергия стабилизации. Ароматические углеводороды. Бензол, его гомологи. Реакционная способность бензола и его гомологов. Конденсированные арены.
- •6. Монофункциональные производные углеводородов: галогенопроизводные углеводорлодов. Получение и реакционная способность. Отдельные представители: хлорэтан, хлороформ, фторотан, йодоформ.
- •13. Липиды. Омыляемые липиды. Жиры - особый вид сложных эфиров (триглицериды). Сложные омыляемые липиды: фосфолипиды, сфин-голипиды, гликолипиды. Медико-биологическое значение липидов.
- •Рацемические смеси и способы их разделения
- •Связь пространственного строения с биологической активностью.
- •17. Кетокислоты - важнейшие метаболиты организма: пировиноградная, ацетоуксусная, щавелевоуксусная, α-кетоглутаровая кислоты. Кето-енольная таутомерия, химические свойства.
- •20. Отдельные представители моносахаридов: d-глюкоза, d-фруктоза, d-галактоза, d-рибоза, d-дезоксирибоза. Их строение, свойства, медико-биологическое значение.
- •21. Дисахариды. Восстанавливающие и невосстанавливающие дисахариды. Таутомерия, свойства и применение лактозы, мальтозы и целлобиозы. Сахароза и ее свойства. Инверсия сахарозы.
- •22. Гомо- и гетерополисахариды. Строение, свойства и значение крахмала, гликогена и клетчатки. Декстраны. Хитин. Пектиновые вещества. Гиалуроновая кислота.
- •23. Амины. Первичные, вторичные, третичные амины и четвертичные аммонийные основания. Основный характер аминов. Реакции ацилирования и алкилирования. Понятие о диаминах. Биогенные амины. Аминоспирты.
- •24.Анилин, химические свойства. Сульфирование анилина.(остальное в 23 билете) Сульфаниловая кислота и ее амид (стрептоцид). Сульфаниламидные препараты в медицине.
- •26. Аминокислоты. Классификация, номенклатура, изомерия аминокислот. Природные α-аминокислоты l- ряда. Незаменимые аминокислоты. Изоэлектрическая точка. (ответ в старых билетах номер 25)
- •28.Белки как природные биополимеры. Первичная структура белков. Понятие о вторичной и третичной структуре белков. (ответ в старых билетах номер 27)
26. Аминокислоты. Классификация, номенклатура, изомерия аминокислот. Природные α-аминокислоты l- ряда. Незаменимые аминокислоты. Изоэлектрическая точка. (ответ в старых билетах номер 25)
Амфотерность является основным физико-химическим свойством аминокислот.
Понятие амфотерность означает, что вещество сочетает в себе свойства как кислот, так и оснований. В водном растворе аминокислоты одновременно ведут себя как кислоты – доноры протонов и как основания – акцепторы протонов. Данное свойство аминокислот напрямую связано со амфотерными свойствами белков, благодаря которому они участвуют в регуляции кислотно-основного состояния крови.
Если общий заряд аминокислоты равен 0, то это ее состояние называют изоэлектрическим.
Величина рН, при которой заряд аминокислоты равен 0, называется изоэлектрической точкой (ИЭТ, pI). Значение изоэлектрической точки зависит от строения радикала аминокислоты:
ИЭТ большинства аминокислот располагается в диапазоне рН от 5,5 (фенилаланин) до 6,3 (пролин),
ИЭТ кислых аминокислот - для глутамата 3,2, для аспартата 2,8,
ИЭТ основных аминокислот - для гистидина 7,6, для аргинина 10,8, для лизина 9,7.
Заряд аминокислот зависит от величины рН среды и от строения их радикала.
При снижении концентрации ионов водорода в растворе (защелачивание среды) повышается их отрыв от аминогруппы и карбоксигруппы аминокислот. Иными словами, от аминокислоты уходит положительный заряд и она становится отрицательно заряженной. Когда рН снижается (закисление среды), то имеющиеся в растворе ионы Н+ присоединяются к амино- и карбоксигруппам – заряд аминокислоты становится положительным.
27. Химические свойства аминокислот: амфотерность, образование солей, специфические реакции α -,β -, γ-аминокислот. Метаболические превращения аминокислот. Реакции дезаминирования, гидроксилирования. Декарбоксилирование α -аминокислот - путь к образованию биогенных аминов и биорегуляторов (коламин, гистамин, триптамин, серотонин, кадаверин, катехоламины ). Образование ди-, три- и полипептидов из α -аминокислот. Пептиды. Пептидная связь. (ответ в старых билетах номер 26)
Реакция гидроксилирования аминокислот:
В результате гидроксилирования в боковой радикал вводится гидроксильная группа.
Декарбоксилирование a-аминокислот – путь к образованию биогенных аминов и биорегуляторов (коламин, гистамин, триптамин, серотонин, кадаревин, катехоламины).
Гистамин образуется при декарбоксилировании гистидина, оказывает широкий спектр биологического действия: вызывает расширение капилляров (обладает сосудорасширяющим действием в отличие от других биогенных аминов), повышение их проницаемости (жидкость из крови выходит в межклеточную среду, что приводит к уменьшению объема крови), понижает АД, стимулирует секруцию желудочного сока и слюны, усиливает секрецию соляной кислоты в желудке; сокращает гладкие мышцы легких, что может вызвать «гистаминовый шок», что проявляется как приступ удушья; участвует в развитии болевых ощущений.
Серотонин образуется из триптофана в нейронах гипоталамуса, функционирует как нейромедиатор в ЦНС, оказывает мощное сосудосуживающее действие, регулирует АД, температуру тела, дыхание, почечную фильтрацию.
Коламин (Этаноламин) образуется при декарбоксилировании серина. Используется для синтеза холина, ацетилхолина, фосфолипидов (фосфатидилэтаноламина, фосфатидилхолина).
Триптамин образуется при декарбоксилировании триптофана.
Кадаверин образуется при декарбоксилировании лизина.
Катехоламины (дофамин, адреналин, норадреналин) синтезируются из аминокислоты тирозина.
