- •1. Предмет химии твердого тела
- •2. Эмпирический подход в химии твердого тела
- •3. Структура минерала перовскита
- •4. Три семейства слоистых перовскитов
- •5. Реакции слоистых перовскитов
- •6. Вывод
- •7. Торгашев в. И. Концепция прафазы и структурные фазовые переходы с конкурирующими неустойчивостями. Ростов-на-Дону. 1998. С. 3-5
Министерство образования и науки РФ Нижегородский государственный университет им. Н.И. Лобачевского
Факультет социальных наук
Кафедра философии
Реферат
«История открытия и развитие исследований соединений со структурой слоистого перовскита»
Выполнил: аспирант 1 года обучения Сыров Е.В. Проверила: к.ф.н., доц. Каржина Г.А.
Нижний Новгород 2017
1. Предмет химии твердого тела
Химия твердого тела имеет дело со всем, что касается получения, свойств (включая структурные аспекты), применения материалов, находящихся в твердом состоянии. Как правило, но вовсе не обязательно это неорганические (неметаллические) соединения. Так, металлы могут быть объектами изучения химии твердого тела, когда речь идет об их кристаллической структуре и таких связанных с этим вопросах, как дефектообразование в кристаллах, образование твердых растворов, фазовые переходы и диаграммы состояния. Органические твердые тела попадают в поле зрения химии твердого тела в тех случаях, когда они проявляют интересные физические свойства, например высокую электропроводность, или когда реакции между ними относятся к топохимически контролируемым, то есть зависят от геометрических особенностей упаковки молекул в кристалле. Минералы рассматриваются постольку, поскольку они представляют собой примеры природных неорганических соединений. Далеко не все объекты химии твердого тела – кристаллические вещества, зачастую они находятся в стеклообразном состоянии.
Твердые неорганические соединения в большинстве своем построены не из отдельных молекул; их структура характеризуется определенным способом совместной упаковки атомов или ионов в пространстве. Разнообразие и сложность образуемых структурных типов являются вопросом химии твердого тела. Это подразумевает не только описание и классификацию кристаллических структур на основе знания пространственных групп, но и изучение факторов, ответственных за возникновение той или иной структуры. Структура и свойства молекулярных соединений, напротив, определяются структурой и свойствами индивидуальных молекул, а то, что многие из этих соединений твердые при комнатной температуре, можно рассматривать не как главный, а как сопутствующий факт при их изучении. Итак, объектами химии твердого тела являются преимущественно немолекулярные соединения.
При изучении твердых тел следует обратить внимание на такой дополнительный важный структурный аспект, как дефектообразование. Дефекты того или иного вида присущи всем без исключения твердым телам и часто оказывают огромное влияние на многие свойства материалов, как, например, электрическую проводимость, механическую прочность и реакционную способность. С дефектообразованием непосредственным образом связано существование твердых растворов, характеризующихся переменным составом твердой фазы (иногда в значительном интервале) при сохранении типа кристаллической решетки. Меняя состав в пределах твердого раствора, удается регулировать и модифицировать в практических целях многие свойства материалов.
Выбор способа получения того или иного твердого вещества в сильнейшей степени влияет на его свойства. Препаративные методы, используемые химией твердого тела, весьма разнообразны. Они включают реакции в твердом состоянии, транспортные реакции, реакции осаждения и электрохимические методы. Применяя различные методы, одни и те же вещества можно получить в разных формах – в виде монокристаллов, порошков, поликристаллических компактных образцов и т.д. Арсенал препаративных методов химии твердого тела включает многие уникальные приемы, не встречающиеся в других областях химии.
Методы анализа и изучения твердых тел, а также методики физических экспериментов, применяемых для этих целей, как правило, отличаются от традиционных, используемых в «нетвердотельной» химии. При этом главенствующая роль отводится различным дифракционным методам (в первую очередь рентгеновской дифракции) и электронной микроскопии, тогда как спектроскопические методы имеют намного более скромное значение. Принципиально в химии твердого тела можно выделить две важнейшие задачи, решаемые с помощью метода рентгеновской дифракции. Во-первых, это установление структур кристаллических соединений; практически все известные структуры обязаны своей расшифровкой методу рентгеновской дифракции на монокристаллах. Во-вторых, так как каждое порошкообразное кристаллическое вещество дает характерную для него картину рентгеновских отражений (рентгенограмму), то её используют подобно отпечатку пальцев при идентификации фаз.
Выяснение взаимосвязи структуры и свойств твердофазных материалов – в этом состоит фундаментальная задача химии твердого тела; при этом следует рассматривать как минимум три уровня структурной организации: а) структуру идеальных кристаллов, б) дефектную структуру реальных кристаллов, включая структуру поверхностных слоев, и в) микроструктуру, или текстуру, поликристаллических твердых тел. Изучение взаимосвязей между структурой и свойствами твердых тел – чрезвычайно плодотворное научное направление, обладающее огромными возможностями в разработке материалов с необычными сочетаниями свойств [1].
Также современная химия твердого тела непосредственно связана с материаловедением, во-первых, благодаря тому, что конечные продукты химии твердого тела – керамики и монокристаллы сами по себе являются готовыми материалами, а во-вторых, потому что большинство используемых в быту и промышленности материалов являются твердыми телами.
