- •По дисциплине: «Ремонт технологических машин»
- •I группа сложности
- •Условия работы технологических машин и оборудования.
- •Виды износа оборудования.
- •Методы диагностики отказов.
- •Методы обнаружения дефектов в узлах машин.
- •Технология восстановления изношенных деталей.
- •Классификация видов ремонта.
- •Виды изнашивания деталей машин
- •Коррозионно-механическое изнашивание
- •Основные факторы процесса изнашивания и их влияние на износ деталей.
- •Методы оценки износа деталей машин
- •Некоторые вредные процессы, вызывающие поломки оборудования
- •Общая схема производственного процесса ремонта машин
- •Виды ремонтов и технического обслуживания технологических машин и оборудования
- •Технология и механизация ремонта.
- •Производство ремонта технологических машин и оборудования.
- •Методы и средства неразрушающего контроля деталей, сборочных единиц и технической диагностики состояния машин.
- •Понятие о ресурсе.
- •Упрочнения и способы механической обработки деталей машин.
- •Характеристика систем планово-предупредительного ремонта (ппр).
- •Структура и принципы построения ремонтного производства на предприятии.
- •Диагностика состояния машин.
- •Свойство металлов.
- •Виды термической обработки.
- •Некоторые вредные процессы, вызывающие неисправности машин.
- •Набивочные и прокладочные материалы.
- •Классификация видов диагностики.
- •Способы механической обработки.
- •Способы упрочнения деталей машин.
- •II группа сложности
- •Система ппр технологических машин и оборудования.
- •Промывка деталей и сборочных единиц
- •Общая схема производственного процесса ремонта машин.
- •Агрегатный метод ремонта (amp).
- •Восстановление деталей сваркой и наплавкой
- •Методы установления значений ресурса технологических машин и их составных частей.
- •Ремонтные средства.
- •Структура построения ремонтных средств.
- •Организация ремонтных работ.
- •Разработка карт технологическихпроцессов ремонта деталей.
- •Специализированные ремонтные базы.
- •Структура ремонтных баз.
- •Составные части технологического процесса ремонта.
- •Процесс восстановления деталей
- •Принцип построения системы ремонта технологических машин и оборудования.
- •Основные задачи и принципы проектирования ремонтных средств.
- •Документации, применяемые при эксплуатации и ремонте оборудования и машин.
- •Сдача и отчетность о проведенных ремонтах.
- •Списание оборудования.
- •Оперативное управление электромеханической службой предприятия.
- •Восстановление деталей сваркой.
- •Восстановление деталей наплавкой.
- •Восстановления деталей электромеханическим методом.
- •Виды ресурсов машин и оборудований.
- •Основные производственные отделения при ремонте.
- •Назначение ремонтных баз.
- •Технологический процесс ремонта и его составные части.
- •Ремонтная документация.
- •Эксплуатационная документация.
- •III группа сложности
- •2. Технологический процесс разборки деталей машин и агрегатов при капитальном ремонте.
- •3. Технологический процесс сборки деталей машин и агрегатов при капитальном ремонте.
- •Технологический процесс ремонта деталей машин и агрегатов при капитальном ремонте.
- •Оформление отчетности и сдачи проведенных ремонтов.
- •Способы методика списания оборудования.
- •Главные задачи проектирования ремонтных средств.
- •Механизация ремонта оборудования и машин.
- •Процесс восстановления деталей машин при ремонтах.
- •Ремонт поршневых насосов.
- •Мастерские для ремонтных работ.
- •Приемка в ремонт, разборка машины.
- •Дефектация и сортировка машин.
- •15. Техническое обслуживания технологических машин и оборудования.
- •Система планово-предупредительного ремонта.
- •Виды обслуживания машин и оборудования.
- •Классификация способов восстановления деталей.
- •Ремонт деталей методом механической обработки.
- •Ремонт заменой элемента детали.
- •Механизированные способы сварки и наплавки.
- •Упрочнение деталей в процессе их ремонта.
- •Технические требования на дефектацию деталей.
- •24. Ремонт цепных передач.
- •25. Ремонт деталей резьбовых соединений.
- •26. Ремонт зубчатых передач.
- •27. Ремонт гидравлических приводов.
- •28. Ремонт пластинчатых насосов.
- •29. Ремонт шестеренчатых насосов.
- •30. Износ и способы восстановления технологических машин и оборудования.
Методы оценки износа деталей машин
В результате износа изменяются размеры и форма деталей, увеличиваются зазоры в сопряжениях подвижных деталей, нарушается плотность посадки неподвижных деталей. Предельный износ детали наступает при условии невозможности дальнейшего ее использования из-за нарушения нормальной работы узла или машины и возможности аварии. Допустимый износ детали предполагает возможность ее установки в машину без ремонта и удовлетворительную работу в течение предстоящего межремонтного периода. Износ детали может быть определен по следующим признакам:
1. обнаружение дефектов (трещин, бороздок, забоин, вмятин) и изменений формы детали при ее внешнем осмотре;
2. изменение характера звука, издаваемого передачей, подшипником, соединением;
3. оценка качества и формы поверхности, обработанной на станке;
4. увеличение мертвого хода рукояток;
5. нагрев детали;
6. падение давления в гидро- или пневмосистеме.
Величина износа может быть определена одним из методов:
1. методом микрометрирования — по изменению размеров детали, устанавливаемому с помощью универсальных измерительных средств;
2. методом искусственных баз - по изменению размера углубления, нанесенного алмазным или твердосплавным инструментом на рабочую поверхность детали;
3. косвенным методом оценки - по изменению эксплуатационных характеристик сопряжения или узла (мертвого хода, температуры, уровня шума и давления).
Некоторые вредные процессы, вызывающие поломки оборудования
Неисправности появляются в результате постоянного или внезапного снижения физико-механических свойств материала, его истирания, деформирования, смятия, коррозии, старения, перераспределения остаточных напряжений и других причин, вызывающих, в конечном итоге разрушение конструкции.
Появление неисправностей обусловлено конструктивными, технологическими и эксплуатационными факторами.
К конструктивным факторам относятся: расчетные нагрузки, скорости относительного перемещения, давления, материалы, их физико-механические характеристики и структура, конструктивное исполнение деталей и сборочных единиц, шероховатость и твердость поверхностей.
Технологическими факторами являются приемы, способы, точность и стабильность получения деталей и заготовок, виды механической, термической, упрочняющей и финишной обработки при их изготовлении, правильность сборки, регулирования, приработки и испытания узлов, агрегатов и машин.
Эксплуатационные факторы оказывают решающее воздействие на сохранение работоспособности оборудования, обеспечиваемых их конструкцией и технологией изготовления. К эксплуатационным относятся факторы, определяемые назначением конструкции, ее нагрузочными и скоростными режимами, а также интенсивностью эксплуатации; не зависящие от назначения машины (условия эксплуатации, своевременность и полнота технического обслуживания и др.).
Различный срок службы (ресурс) деталей обусловлен многими причинами, основными из которых являются следующие:
1. Разнообразие функций деталей в машине [2].
2. Широкий диапазон изменения действующих на детали нагрузок.
3. Наличие как активных (движущихся), так и пассивных (неподвижных) деталей.
4. Разнообразие видов трения в сопряжениях, использование в сопряжениях деталей из разных материалов, вызванное необходимостью снижения сил трения.
5. Отклонения в свойствах материалов, точность и качество обработки сопрягаемых деталей; условия эксплуатации.
Неисправности оборудования можно разделить на три группы: износы, механические повреждения и химико-тепловые повреждения.
Износы деталей машин определяются давлением, циклическими нагрузками, режимом смазывания и степенью его стабильности, скоростью перемещения поверхностей трения, температурным режимом работы деталей, степенью агрессивности окружающей среды, качеством обработки и состоянием поверхностей трения и т.д.
В зависимости от условий работы все детали по виду изнашивания можно разбить на пять групп.
К первой группе — детали ходовой части мобильных машин, для которых основным фактором, определяющим их долговечность, является абразивное изнашивание.
Ко второй группе — детали, у которых основным фактором, лимитирующим долговечность, является износ вследствие пластического деформирования.
К третьей группе — детали, для которых доминирующим фактором является коррозионно-механическое или молекулярно-механическое изнашивание.
К четвертой группе — детали, долговечность которых лимитируется пределом выносливости.
К пятой группе—детали, у которых долговечность зависит одновременно от износостойкости трущихся поверхностей и предела выносливости материала деталей.
Предельным износом называют износ, соответствующий предельному состоянию изнашивающегося изделия.
Допускаемым износом называют износ, при котором изделие может сохранить работоспособность в течение межремонтного периода.
Механические повреждения. К таким повреждениям относятся трещины, пробоины, риски и задиры, выкрашивания, поломки и обломы, изгибы, вмятины и скручивания.
Трещины образуются в результате воздействия значительных местных нагрузок, ударов и пере нагружения. Трещины часто возникают на чугунных деталях и на деталях, изготовленных из листового материала. Кроме трещин, возникающих в результате воздействия сил ударного характера, появляются усталостные трещины в наиболее напряженных местах деталей (продолжительное воздействие знакопеременных нагрузок).
Пробоины появляются в результате ударов различных предметов о поверхности тонкостенных деталей.
Риски и надиры на рабочих поверхностях деталей чаще образуются вследствие загрязнения смазки или абразивного действия чужеродных частиц.
Выкрашивание — дефект, характерный для поверхностей деталей, подвергнутых химико-термической обработке, появляющийся вследствие динамических ударных нагрузок в процессе эксплуатации. Выкрашивание может происходить и в результате усталостных напряжений.
Поломки и обломы возникают при сильных ударах о детали; часто наблюдаются на литых деталях. Могут возникать также в результате усталости металла.
Изгибы и вмятины характеризуются нарушением формы деталей и происходят в результате ударных нагрузок.
Скручивание деталей возникает от воздействия большого крутящего момента, связанного с преодолением временных значительных сопротивлений при работе.
Химико-тепловые повреждения. По сравнению с другими повреждениями химико-тепловые повреждения деталей встречаются реже и возникают, как правило, в результате сложных взаимодействий при тяжелых условиях эксплуатации машин. К таким повреждениям относятся: коробление, коррозия, раковины, образование нагара и накипи, электроэрозионное разрушение и т. д.
Коробление деталей происходит в результате воздействия высоких температур (чаще при нарушении правил эксплуатации машин), приводящих к возникновению структурных изменений и больших внутренних напряжений.
Коррозия — процесс разрушения металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой. Поскольку подавляющее большинство технологических сред представляет собой электролиты, то основным видом коррозии оборудования является электрохимическая коррозия. Для оборудования характерны сплошная (равномерная и неравномерная) и местная коррозии. Сплошная коррозия проявляется в постепенном уменьшении первоначальной толщины элементов сосудов, аппаратов и машин. Большую опасность представляет местная (избирательная) коррозия, т. е. коррозия, охватывающая отдельные участки поверхности деталей машин и аппаратов. Основными причинами появления местной коррозии являются как внутренние факторы (непостоянство структуры и свойств материала, состояние поверхности, неоднородное напряженное состояние в элементах конструкции и т. п.), так и внешние факторы, определяемые, прежде всего условиями взаимодействия металла со средой (температура, давление, время, условия контакта, состав коррозионной среды и т. п.).
Значительно снижают работоспособность конструкции такие виды избирательной коррозии, как межкристаллитная и ножевая коррозияя. Межкристаллитная коррозияя характерна для конструкций, изготовленных из коррозионно-стойких хромистой и хромоникелевой сталей.
Одним из видов разрушения являются коррозионные усталость и растрескивание. Коррозионная усталость возникает при одновременном воздействии циклических растягивающих напряжений и агрессивной среды и обусловлена значительным снижением предела выносливости в специфических условиях по сравнению с пределом выносливости этих металлов на воздухе. Коррозионное растрескивание наблюдается при одновременном воздействии коррозионной среды и внешних или внутренних растягивающих напряжений с образованием транскристаллитных или межкристаллитных трещин.
На склонность к образованию коррозионных трещин существенно влияют: среда, давление и температура, физико-химические свойства металла, величина и характер распределения растягивающих напряжений и т. п.
Наиболее распространенный вид разрушения оборудования-коррозионно-механическое изнашивание, происходящее в результате механических воздействий, сопровождающихся химическим или электрохимическим воздействием среды на металл.
Гидроабразивное изнашивание происходит под воздействием на поверхность металла абразивных частиц, взвешенных в жидкости и перемещающихся относительно изнашиваемой поверхности. Гидроабразивное изнашивание происходит при наличии значительного числа абразивных частиц в составе технологической среды. При воздействии скоростных потоков технологических сред на поверхность трубопроводов, деталей насосов, запорной и регулирующей арматуры и других поверхностей, возникает разрушение металла вследствие ударных воздействий турбулентных струй — гидроэрозионное изнашивание. Его разновидности — коррозия при гидравлических ударах и кавитационное изнашивание.
Кавитационное изнашивание металла происходит в результате воздействия на его поверхность микроударных нагрузок, возникающих при образовании и захлопывании кавитационных полостей и пузырьков.
Раковины (выгорание) образуются в результате местных температурных воздействий на поверхности детали, например раковины на корпусных поверхностях (фасках) выпускных клапанов и т.д.
Нагар образуется в результате взаимодействия сильно нагретых газов и продуктов сгорания топлива и масел на поверхностях деталей. Образовавшийся нагар ухудшает условия теплопередачи и в некоторых случаях приводит к перегреву деталей и образованию на них трещин.
Накипь на стенках рубашки блока появляется в результате использования в системе охлаждения двигателей воды с малорастворимыми в воде солями магния и кальция и механическими примесями.
Электроэрозионное разрушение возникает в результате воздействия на поверхности деталей искровых разрядов. Электроны, вылетающие с катода, выбивают с поверхности анода частицы металла, которые рассеиваются в окружающей среде и частично переносятся на катод. Такие повреждения возникают на электродах свечей, на контактах электрических приборов (прерывателей, распределителей, магнето и др.), на коллекторах генераторов и стартеров и т. п.
