Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 раздел.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
254.49 Кб
Скачать

7.Аварии на радиационно-опасных объектах(роо).

Понятие о РОО

Согласно ГОСТ Р22.0.05-94, радиационно-опасным объектом (далее РОО) считается тот, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества, при аварии на котором или его раз-рушении может произойти облучение ионизирующим излучением или радиоактивное загрязнение людей, сельскохозяйственных животных и растений, объектов народного хозяйства, а также окружающей природной среды.

Классификация аварий.

Радиационная авария - потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды.

Степень радиационной опасности для населения в случае аварии на РОО определяется многими факторами, важнейшими из которых является количество и радионуклидный состав выброшенных во внешнюю среду РВ, расстоянием от источника аварийного выброса до населенных пунктов, характером их застройки и плотностью населения, природными климатическими условиями, характером природопользования, водоснабжения и питания населения.

Важное место в анализе источников радиационный опасности занимает правильное определение видов возможных аварий, в расчете на которые необ-ходимо планировать те или иные защитные мероприятия.В первую очередь, аварии на РОО можно подразделить на проектные, то есть такие, которые могут быть предотвращены существующими (заложенны-ми в проекте) системами безопасности, проектные с максимально возможными последствиями (так называемые максимальные проектные аварии) и запроектные, которые не могут быть локализованы системами внутренней безопасности объекта. Последствия первых двух не приводят к выходу РВ за пределы СЗЗ и облучению населения сверх допустимых установленных норм, третьих же, напротив, требуют введения в той или иной степени мер по радиационной защите населения.

Характеристика проникающей радиации и радиоактивного заражения местности

К классификациям аварий на РОО объектах существует несколько подходов. Это обусловлено тем, что подобные аварии отличаются большим разнообразием присущих им признаков, а также разнообразием объектов, на которых они могут происходить.Так, в соответствии с Руководством по организации контроля состояния природный среды аварии, в частности, на АС подразделяются на 4 категории.

1-я категория. Локальная авария: нарушение в работе АС, при котором произошел выход РВ или ИИ за предусмотренные границы технического оборудования, зданий, сооружений. При этом количество выброшенного РВ превышает установленные значения, но зона загряз¬нения не выходит за преде-лыпромплощадки.

2-я категория. Местная авария при которой происходит выход радиоактивных продуктов за пределы промплощадки, но область радиационного за-грязнения находится в пределах СЗЗО. При местной аварии возможно облучение персонала в дозах, превышающие допустимые, концентрации РВ в воздухе и степень радиоактивного загрязнения поверхностей в помещениях и территории также выше допустимых.

3-я категория. Средняя авария - характеризуется тем, что область радио-активного загрязнения выходит за пределы СЗЗ, но локализуется в близлежа-щих районах, вызывая незначительные переоблучение проживающего вблизи АС (в 30-км зоне) населения.

4-я категория. Крупная авария - при которой область радиоактивного за-грязнения выходит за пределы 100-км зоны и охватывает территории несколь-ких административных единиц с общим населением более 1 млн. человек при средней дозе облучения более 3 бэр.

С целью типизации радиационных аварий в МАГАТЭ на основе опыта Франции, Японии и некоторых других стран разработана шкала оценки собы-тий на АЭС, с помощью которой вводится дифференцированное восприятие происшествий и аварий на АЭС. Шкала предусматривает 7 уровней и условно разделена на 2 части. Нижняя часть шкалы включает 3 уровня (1-3) и относится к происшествиям (инцидентам), верхняя часть 4 уровня, соответствует авариям. Условной граница раздела шкалы является максимальная проектная авария (4 уровень).

Зоны заражения:

Авария на ACThreeMileJsland - 2 (TMI-2).28.03.79. Утечка РВ произошла через клапан сброса давления и продол-жалась в течении 2,5 час. Затем были включены насосы аварийного охлаждения и A3 была затоплена.Выброс составил 65.0105110 Бк (0,1 ррт от общего содержания в актив-ной зоне реактора, порядка 14 Ки). Высвободилось также пренебрежимо малое количество 1400Ва (Т41/20=12,74 суток). Выброс ИРГ составил 105170 Бк (4-0 3 МКи), т.е. 4 -02% от их содержания в A3. Мощности дозы излучения вне площадки менее 1 мР/ч. Разрушения герметизация здания не произошло; этим объясняется сравнительно небольшой выброс РВ.Протяженность облака в атмосфере составила 30 км. Площадь загрязнения ограничена промплощадкой. Коллективная доза - 20 чел.. Эффективная эквивалентная доза облучения составила - 0,04 на площадке и 0,73 вне площадки. Авария в Windskale. В октябре 1957 года на энергетическом блоке про-изошел пожар, продолжавшийся в течении 2 дней. Реактор использовался для производства плутония. В результате горения графита и из-за отсутствия си-стемы герметизации произошел выброс РВ через 120-м трубу в окружающую среду. Выброс йода составил 75.0105140Бк (4-016000 Ки, т.е.12% от общего содержания в A3. Кроме этого, в составе выброса были следующие радионуклиды Те - 65.0105130 Бк, (4-01400 Ки),5 1370CS - 25.0105130 Бк, (т.е. 4 -0450 Ки), 589,900Sr -3,35. 105120БХ, (т.е.4 -076 Ки), ИРГ - 1,35.0105160 Бк, (т.е. 35.010550 Ки). Протяженность облака составила 300 км, площадь зоны загрязнения 4-520 км. Эффективная эквивалентная дозы облучения составила - на площадке -0,045, вне площадки - 0,2. Доза облучения щитовидной железы - взрослых - 9,5, детей 16. 26.4.86. на ЧАЭС - 4 произошли 2 последовательных взрыва, которые привели к разрушению графитовой кладки реактора, технологических каналов, разгерметизация реакторного пространства, плавления большей части твэлов. В результате мощного взрыва газоаэрозольное облако пробило инверсионный слой атмосферы на высоту более 1,5 км. Общий выброс РВ, состоящий в т.ч. из диспергрованного топлива составил 4 -050 МКи, по другим оценкам до 130 МКи. Образовалось обширная зона, загрязненная всеми продуктами наработки реактора, в т.ч. и трансурановыми элементами.

Единицы радиоактивности

единицы измерения активности радиоактивных элементов в препаратах и в разл. средах. Активность радиоактивного препарата в международной системе единиц (СИ) измеряется числом актов распада в секунду (расп/сек). Допускается применение внесистемных единиц: расп/мин и кюри (Ки = 3,700 • 1010 расп/сек). Для смеси нескольких радиоактивных элементов (или изотопов) указывается активность каждого из них. Удельная активность измеряется в расп/сек • м3 или расп/сек • кг; (внесистемные единицы: Ки/см3, Ки/г). С единицами радиоактивности тесно связаны единицы радиоактивных излучений, характеризующие выход излучений из источника и их поле. В этих единицах в системе СИ — измеряются плотность потока частиц (или квантов) — частица/сек • м2 (или квант/сек • м2); интенсивность излучения — Вт/м2, поглощенная доза излучения (доза излучения)— Дж/кг; мощн. поглощенной дозы излучения (мощн. дозы излучения — Вт/кг; экспозиционная доза рентгеновского и γ-излучений — Кл/кг; мощн. экспозиционной дозы рентгеновского и γ-излучений — А/кг. Во внесистемных единицах экспозиционная доза измеряется в рентгенах (P = 2,57976 • 10-4 Кл/кг), а мощн. экспозиционной дозы в Р/сек (2,57976 • 10-4 A/кг).

Предельно-допустимая разовая доза облучения

Гипотетический норматив наибольшей эквивалентной дозы, которая не вызывает неблагоприятных изменений здоровья (т.е. равномерное облучение в течение 50 лет не вызывает в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами); с 1977 для человека М.д.д. принята равной 5 бэр в год, или 0,05 Зв <sievert> в год.

Понятие о лучевом поражении при аварии на РОО

Лучевое поражение - повреждение тканей, вызванное воздействием радиации.

В общем и целом под термином «радиация» понимают волны или частицы высокой энергии, испускаемые естест­венными или искусственными источниками. Эти волны или частицы обладают двумя основными качествами: способностью проникать через объекты окружающей среды («проникающая радиация») и ионизировать эту среду («ионизирующая радиация», излучение). Повреждение тканей может быть вызвано однократным (кратковременным) воздействием высоких доз радиации или длительным облучением в низких дозах. Некоторые эффекты воздействия радиации кратковременны; другие приводят к хроническим заболеваниям. Ранние последствия воздействия больших доз радиации становятся очевидными очень быстро - иногда через несколько минут после облучения, иногда через несколько дней. Отдаленные последствия могут не проявляться в течение многих недель, месяцев или даже лет. Генные мутации половых клеток проявятся только тогда, когда у человека, подвергшегося воздействию радиации, родятся дети: у них могут быть врожденные пороки развития.

Действие ионизирующего излучения на организм человека

В результате воздействия ионизирующих излучений нарушается нормальное течение биохимических процессов и обмен веществ в организме. В зависимости от величины поглощенной дозы излучения и от индивидуальных особенностей организма вызванные изменения могут быть обратимыми или необратимыми. При небольших дозах пораженная ткань восстанавливает свою функциональную деятельность. Большие дозы при длительном воздействии могут вызвать необратимое поражение отдельных органов или всего организма (лучевое заболевание).

Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем облучении, когда источник облучения находится вне организма, так и при внутреннем облучении, когда радиоактивные вещества попадают внутрь организма, например, ингаляционным путем — при вдыхании или при заглатывании с пищей или водой.Биологическое действие ионизирующего излучения зависит от величины дозы и времени воздействия излучения, от вида радиации, размеров облучаемой поверхности и индивидуальных особенностей организма.

Мероприятия по защите

Для определения индивидуальных доз облучения персонала необходимо систематически проводить радиационный (дозиметрический) контроль, объем которого зависит от характера работы с радиоактивными веществами. Каждому оператору, имеющему контракт с источниками ионизирующего излучения, выдается индивидуальный дозиметр для контроля полученной дозы гамма-излучений. В помещениях, где проводится работа с радиоактивными веществами, необходимо обеспечить и общий контроль за интенсивностью различных видов излучений. Эти помещения должны быть изолированы от прочих помещений, оснащены системой приточно-вытяжной вентиляции с кратностью воздухообмена не менее 5. Окраска стен, потолка и дверей в этих помещениях, а также устройство пола выполняются таким образом, чтобы исключить накопление радиоактивной пыли и избежать поглощения радиоактивных аэрозолей, паров и жидкостей отделочными материалами (окраска стен, дверей и в некоторых случаях потолков должна производиться масляными красками, полы покрываются материалами, не впитывающими жидкости, - линолеум, полихлорвиниловым пластиком и др.). Все строительные конструкции в помещениях, где проводится работа с радиоактивными веществами, не должны иметь трещин и несплошностей; углы закругляют для того, чтобы не допустить скопления в них радиоактивной пыли и облегчить уборку. Не менее 1 раза в месяц проводят генеральную уборку помещений с обязательным мытьем горячей мыльной водой стен, окон, дверей, мебели и оборудования. Текущая влажная уборка помещений проводится ежедневно.Для сооружения стационарных средств защиты стен, перекрытий, потолков и т.д. используют кирпич, бетон, баритобетон и баритовую штукатурку (в их состав входит сульфат бария – BaSO4). Эти материалы надежно защищают персонал от воздействия гамма- и рентгеновского излучения.Для создания передвижных экранов используют различные материалы. Защита от альфа-излучения достигается применением экранов из обычного или органического стекла толщиной несколько миллиметров. Достаточной защитой от этого вида излучения является слой воздуха в несколько сантиметров. Для защиты от бета-излучения экраны изготавливают из алюминия или пластмассы (органическое стекло). От гамма- и рентгеновского излучения эффективно защищают свинец, сталь, вольфрамовые сплавы. Смотровые системы изготавливают из специальных прозрачных материалов, например, свинцового стекла. От нейтронного излучения защищают материалы, содержащие в составе водород (вода, парафин), а также бериллий, графит, соединения бора и т.д. Бетон также можно использовать для защиты от нейтронов.Защитные сейфы применяются для хранения источников гамма-излучения. Они изготавливаются из свинца и стали.Для работы с радиоактивными веществами, обладающими альфа- и бета-активностью, используют защитные перчаточные боксы. Защитные контейнеры и сборники для радиоактивных отходов изготавливаются из тех же материалов, что и экраны – органического стекла, стали, свинца и др. При проведении работ с источниками ионизирующих излучений опасная зона должна быть ограничена предупреждающими надписями.Принцип действия приборов, предназначенных для контроля за персоналом, который подвергается воздействию ионизирующих излучений, основан на различных эффектах, возникающих при взаимодействии этих излучений с веществом. Основные методы обнаружения и измерения радиоактивности – ионизация газа, сцинтилляционные и фотохимические методы. Наиболее часто используется ионизационный метод, основанный на измерении степени ионизации среды, через которую прошло излучение.

Медицинские средства защиты от радиации

Пищевые добавки и препараты против радиации

Очень часто совместно со спецодеждой и экранами для обеспечения защиты от радиации используются пищевые добавки. Они принимаются внутрь до или после попадания в зону с повышенным уровнем радиации и во многих случаях позволяют снизить токсическое воздействие радионуклидов на организм. Кроме того, снизить вредное воздействие ионизирующего излучения позволяют некоторые продукты питания.Среди биологически активных добавок выделяют Элеутерококк ("сибирский женьшень"), он снижает влияние радиации на организм. В СССР был разработан препарат, защищающий людей и животных от радиации. Он назван АСД (антисептик-стимулятор Дорогова). В 1943 г. нескольким лабораториям различных институтов СССР было дано секретное правительственное задание. Надо было разработать препарат, защищающий людей и животных от радиации. Он должен был не только значительно повышать иммунитет организма, но и быть дешевым, недефицитным. Успех выпал лишь на долю лаборатории Всесоюзного института экспериментальной ветеринарии (ВИЭВ), возглавляемой кандидатом наук Дороговым А.В. Препарат был создан в 1947 г. Удачу принесли нетрадиционный подход к решению проблемы и экспериментаторский талант Алексея Дорогова. Дорогов использовал в качестве сырья лягушек, а в качестве способа переработки — термическую возгонку тканей с конденсацией жидкости. Полученная жидкость обладала антисептическими, стимулирующими, ранозаживляющими свойствами и была названа АСД (антисептик-стимулятор Дорогова).

Действия населения при аварии на РОО

Несомненно, что важная роль должна отводиться защитным сооружениям (ЗС), которые должны быть на различном удалении от объекта и с различными коэффициентами защиты (от 5000 до 40).Основное содержание организационных мероприятий должны составлять: планирование мер защиты и, в первую очередь, экстренной эвакуации; создание и подготовка сил и средств для ликвидации аварии; обеспечение персонала и населения средствами индивидуальной защиты (СИЗ) и особенно йодными препаратами; систематический контроль радиационной обстановки; снабжение населения печатными материалами с рекомендациями действий и защиты в случаях радиационной опасности.Обязательными мероприятиями санитарно-гигиенического плана являются создание вокруг объекта санитарно-защитных зон и регулярный дозиметрический контроль. При возникновении аварии на объекте с выбросом радиоактивных веществ в атмосферу содержание проводимых мероприятий, их последовательность будут определяться видами аварии (возможными фазами ее развития). Во всех случаях сначала уточняется решение о проведении защитных мер и проводятся обязательные первоочередные мероприятия, а именно: укрытие людей в ЗС; йодная профилактика; применение СИЗ; эвакуация населения; блокирование загрязненной территории; подвоз чистых продуктов, питьевой воды и др. меры. Все подобные мероприятия должны быть выполнены до подхода радиационного облака.Определение защитных мер можно провести в два этапа.на первом этапе заблаговременно определяются различные меры и положения зон планируемых мер по защите населения. На втором этапе определяются (уточняются) размеры, положения и другие характеристики зон проведения мер по защите населения на начальной и ранней фазах развития аварии с учетом реальной обстановки и метеорологических данных.

На первом этапе размеры и положение зон планирования мер по защите осуществляется методом прогнозирования по данным моделирования возможных аварий. С учетом изменения направления ветра планирование осуществляется по круговым зонам. При этом выделяют следующие зоны. Зона № 1 – зона общей упреждающей эвакуации населения при возникновении начальной фазы аварии (НФА). Зон представляет собой круг с радиусом R1 в зависимости от типа и мощности реактора (от 7 до 15 км). Зона № 2 – зон общей экстренной эвакуации населения. При отсутствии НФА она включает в себя зону № 1 и представляет собой круг радиусом R2 =30 км для всех типов реакторов. При наличии НФА – кольцо с радиусами R1 и R2. Критериями для этой зоны являются дозовые нагрузки на все тело и щитовидную железу для беременных женщин и детей за время эвакуации. На втором этапе размер, положение и др. характеристики зон проведения мер по защите определяются методом прогнозирования по данным аварии наначальной и ранней ее фазах и метеоусловий на момент выброса РВ. Прогнозируемая зона распространения загрязненного воздуха при аварии имеет форму эллипса, размеры которого определяются по табличным данным в зависимости от метеорологических данных: скорости и направления ветра, вертикальной устойчивости атмосферы. Зоны № 1, № 2 и № 3 будут определяться как секторы № 1 и № 2 с соответствующими углами, определяемыми по данным таблиц в зависимости от угла разворота ветра. При этом сектор № 1 включает эллипс вероятного распространения загрязненного воздуха и учитывает наиболее вероятные величины флуктуации воздуха. В данном секторе меры защиты проводятся обязательно.