Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OTVETY.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
14.51 Mб
Скачать

65. Системы автоматического регулирования энергетических параметров дуговой сварки. Автоматическое регулирование тока сварки

Изменение величины сварочного тока при дуговой сварке может осуществляться или с помощью устройств, которые конструктивно являются частью сварочного трансформатора (например, магнитные подвижные шунты, электромагнитные шунты, подвижные обмотки), или с помощью устройств, которые включают в цепь вторичного контура (балластные реостаты, дроссели насыщения или магнитные усилители, управляемые диоды или транзисторы). Поскольку системы автоматического регулирования должны достаточно быстро реагировать на возникающие возмущения, при создании автоматических регуляторов предпочтение отдается устройствам с малой инерционностью или, иначе, устройствам с высоким быстродействием. К таким устройствам, прежде всего, относятся тиристоры (управляемые диоды) и транзисторы (триоды).

Применение управляемых диодов наиболее эффективно в источниках питания постоянного тока, когда для преобразования переменного тока в постоянный используется трехфазная мостовая выпрямительная схема.

Для управления переменным током применяют встречно параллельное включение тиристоров. Однако при неполно открытых тиристорах синусоидальность кривой тока искажается, и возникают проблемы с повторным возбуждением дуги при переходе кривой тока через нуль. Поэтому тиристоры наиболее целесообразно использовать для таких способов сварки, в которых форма тока не влияет на стабильное течение процесса сварки. К таким способам можно отнести сварку под слоем флюса, электрошлаковый процесс сварки, контактную точечную и роликовую сварку. Причем регуляторы тока для этих процессов включаются в первичную цепь сварочных трансформаторов, что уменьшает стоимость регуляторов и их габариты.

Применение транзисторов при сварке на переменном токе ограничено в основном областью малых (до 100 А) токов.

Таким образом, для процессов дуговой сварки на переменном токе выше 100 А при автоматическом управлении величиной этого параметра применяют, как правило, или сварочные трансформаторы

с электромагнитными шунтами, или дроссели насыщения (магнитные усилители), включенные во вторичную цепь сварочного

трансформатора.

В системах автоматического регулирования тока сварки величину сварочного тока измеряют или с помощью измерительных трансформаторов (переменный ток сварки), или с помощью шунтов при сварке на постоянном токе.

На рис. 25 изображена в упрощенном виде система автоматической стабилизации переменного тока при питании сварочной дуги от трансформатора ТС с электромагнитными шунтами (обмоткой подмагничивания). Рабочее значение тока сварки задается в системе величиной опорного (задающего) напряжения Uо, которое можно изменять путем перемещения движка потенциометра R1. Большему значению Uо соответствует большее значение тока дуги Iд. Ток измеряется трансформатором ТТ, напряжение с которого поступает на усилитель У1, а с него - на выпрямитель В. Выпрямленное напряжение Uв, пропорциональное току Iд, подается на схему сравнения (резисторы R2 и R1) встречно опорному напряжению Uо, так что на вход усилителя У2 поступает разность напряжений

U = Uо – Uв.

Рис. 25. Система автоматической стабилизации тока сварки

При отсутствии возмущений, влияющих на величину тока Iд, разность напряжений U остается неизменной. Если же величина тока по какой-либо причине изменится, например, в меньшую сторону, то уменьшится напряжение Uв, и, следовательно, увеличится разность U, что повлечет увеличение тока управления Iу в обмотке подмагничивания сварочного трансформатора, а это в конечном итоге вызовет увеличение тока Iд. Поскольку система является статической, новое значение тока Iд будет обязательно отличаться от первоначального, но при правильно спроектированной системе останется в пределах заданной точности.

Автоматическое регулирование напряжения дуги

Прежде чем рассматривать вопрос автоматического регулирования наклона электрода к поверхности изделия, целесообразно познакомиться с системой автоматического регулирования напряжения на дуге по причинам, которые будут понятны из последующего текста.

Система автоматического регулирования установочной длины дуги имеет два существенных недостатка: во-первых, необходимость применять специальный датчик, во-вторых, наличие методической погрешности, которая ограничивает возможности применения системы при сколько-нибудь значительной кривизне

а) б)

Рис. 21. Зависимость напряжения дуги Uд от ее длины Lд (а) и

составляющие длины дуги (б)

поверхности. Поэтому в тех случаях, когда процесс сварки не сопровождается такими возмущениями, как изменяющиеся зазоры между стыкуемыми кромками и между изделием и технологической подкладкой, для автоматического регулирования вертикального положения сварочного электрода относительно поверхности изделия применяют систему автоматического регулирования напряжения дуги. В сварочной литературе автоматические регуляторы напряжения дуги обозначают абревиатурой АРНД. Поскольку между напряжением дуги Uд и ее длиной Lд существует функциональная зависимость (рис. 21,а), то, используя в качестве регулирующего воздействия на величину напряжения дуги вертикальное перемещение сварочной горелки, т.е. изменяя длину дуги, можно стабилизировать не только напряжение Uд, но и значение самой длины дуги.

Длину дуги Lд можно представить суммой двух составляющих:

Lд = Lу + Lск,

где Lу – установочная длина дуги; Lск – скрытая составляющая длины дуги (рис. 21,б). Если в процессе сварки Lск не изменяется (не возникают упомянутые выше зазоры), то изменение напряжения на дуге будет обусловлено только изменением Lу и, следовательно, при стабилизации Uд будет стабилизироваться и установочная длина дуги. При этом нет нужды в специальном датчике, а контроль вертикального расположения электрода относительно поверхности свариваемого изделия осуществляется непосредственно в месте сварки, и поэтому кривизна соединения не вносит в работу системы дополнительной погрешности.

Р аботу системы автоматической стабилизации длины дуги при сварке неплавящимся электродом поясним, используя рис. 22.

Рис. 22. Система автоматической стабилизации напряжения дуги

Величину напряжения дуги Uд задают величиной опорного (задающего) напряжения Uо путем перемещения движка потенциометра R1: чем больше опорное напряжение, тем больше напряжение дуги, а значит, больше и длина дуги. Если в процессе сварки отсутствуют возмущения, влияющие на Uд, между опорным напряжением и напряжением дуги устанавливается и сохраняется равенство (Uо = Uд), при этом на входе усилителя сигнал отсутствует (U = Uо – Uд = 0), двигатель М не работает, и, следовательно, горелка не перемещается в вертикальном направлении.

Предположим, что длина дуги из-за кривизны стыка увеличилась. В этом случае возрастет Uд, и, поскольку величина Uо остается неизменной, на входе усилителя возникнет напряжение U определенной полярности относительно входных клемм усилителя. Величина этого напряжения будет тем больше, чем больше изменится длина дуги. При U  0 на якорь двигателя М с выхода усилителя будет подано напряжение Uя определенной полярности и соответствующей входному сигналу величины (если усилитель аналогового, а не релейного типа). Двигатель начинает работать, перемещая горелку вниз. Длина дуги уменьшается, и, следовательно, уменьшается напряжение Uд. Работать двигатель будет до тех пор, пока вновь не наступит равенство Uд = Uо, при котором длина дуги будет иметь первоначальное значение.

Если длина дуги уменьшится, изменят полярность U и Uя, и горелка будет перемещаться вверх, пока опять не наступит равенство напряжения дуги опорному напряжению.

Напомним, что в рассмотренной системе регулирующим воздействием является вертикальное перемещение сварочной горелки. Сама система относится к системам астатическим: для установившихся состояний этих систем характерно равенство U=0.

При сварке плавящимся электродом для стабилизации напряжения дуги используют или эффект саморегулирования, о котором будет сказано несколько ниже, или системы автоматического регулирования, в которых регулирующим воздействием является изменение скорости подачи электродной проволоки, а сами системы относятся, как правило, к системам статическим. В таких системах U принципиально не может быть равным нулю, так как при U = 0 будет равна нулю и скорость подачи электродной проволоки, что равнозначно отсутствию сварки. Другими словами, в этих системах (см. рис. 8, интерпретируя редуктор как механизм подачи электродной проволоки) каждому конкретному установившемуся режиму работы оборудования соответствует набор неизменных значений параметров: Uо1; Uд1; U1; Uя1; Vэ1, где Vэ1 – скорость подачи электродной проволоки (на рис. 22 этот параметр не указан). При возникшем возмущении система придет к новому установившемуся режиму, при котором значение Uд2 будет обязательно отличаться от Uд1, но не больше,

чем на величину заданной точности. Таким образом, новому установившемуся состоянию будут соответствовать и новые значения параметров Uо, Uд, U, Uя, Vэ, отличающиеся от первоначальных Uо1, Uд1, U1, Uя1, Vэ1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]