- •Камская государственная инжинерно-экономическая академия
- •I Часть.
- •Содержание
- •Вопрос 1: Технико-экономические показатели станков технико-экономические показатели и критерии работоспособности
- •§ 1.1. Технико-экономические показатели
- •Вопрос 2: Понятие автомат и полуавтомат, цикл автомата. Проблемы смены инструмента и обеспечения качества на автоматах.
- •Назначение токарных автоматов и полуавтоматов
- •Проблема автоматизации смены и регулирования режущих инструментов
- •Вопрос 3: Конструкция и наладка токарно-револьверного полуавтомата на примере 1г340. Токарно-револьверные станки
- •Токарно-револьверный станок мод. 1г340
- •Технические характеристики
- •Вопрос 4: Конструкция и наладка токарно-револьверного автомата на примере 1е140п и 1а136. Токарно-револьверные автоматы
- •Основные узлы автомата
- •Токарно-револьверный автомат модели 1a136 Общая характеристика станка
- •Кинематика автомата модели 1a136
- •Узлы токарно-револьверного автомата 1a136
- •Вопрос 5: Принципы работы автомата продольного точения, фасонно-отрезные автоматы. Фасонно-отрезные автоматы
- •Автоматы продольного точения
- •Технические характеристики автоматов продольного точения
- •Вопрос 6: Конструкция и наладка горизонтального многошпиндельного полуавтомата на примере 1б 240-6к. Многошпиндельные токарные автоматы
- •Вопрос 7: Конструкция и наладка вертикального многошпиндельного полуавтомата на примере 1к282. Многошпиндельные токарные полуавтоматы
- •Вопрос 8: Токарно-копировальные станки: Назначение, принцип работы. Фрезерно-копировальные станки. Токарно-гидрокопировальный полуавтомат модели 1722. Общая характеристика станка
- •Кинематика станка модели 1722
- •Узлы станка модели 1722
- •Копировалыю-фрезерные станки
- •Вопрос 9: Агрегатные станки, назначение, компоновки, осов- ные узлы, их разновидности. Устройство многошпиндельного сверлильнрого агрегатного станка.
- •Классификация и типовые компоновки
- •Унифицированные узлы агрегатных станков
- •Вопрос 10: Конструкции, компоновки и наладка токарных станков с чпу.
- •Токарные станки с чпу и многоцелевые станки общие сведения
- •Компоновка токарных станков с чпу
- •Конструктивные особенности
- •Рис, 1.25. Привод датчика резьбонарезания.
- •Вопрос 11: Конструкции токарных обрабатывающих центров. Конструкции узлов полярной координаты.
- •Привод вращающегося инструмента токарных металлорежущих станков
- •Задачи наладки
- •Вопрос 12: Конструкции и назначение фрезерно-сверлильно-расточных обрабатывающих центров. Фрезерные станки с чпу
- •Приспособления для фрезерных станков
- •Многоцелевые станки для обработки корпусных и плоских деталей
- •Вопрос 13: Конструкции инструментальных магазинов обрабатывающих центров. Кодирование инструментов.
- •Магазины для накопления и транспортирования инструментов
- •Часть II Под общ. Ред. А.С. Проникова. – м.: Издательство мгту им. Н. Э. Баумана: Машиностроение, 1995, - 320с.: ил.) Стр 60-160.
- •Вопрос 14: Наладка фрезерно-сверлильно-расточных обрабатывающих центров. Фрезерные операции
- •Работа на многоцелевых станках с чпу
- •Режущие и вспомогательные инструменты
- •Настройка инструментов на размер вне станка
- •Базирование и закрепление заготовок. Настройка крепежных приспособлений
- •Вопрос 15: Обзор конструкции станков с чпу, зубофрезерные, шлифовальные, агрегатные. Шлифовальные станки с чпу
- •Зубофрезерный полуавтомат мод. 53а50кф4
- •Вопрос 16: Особенности эксплкатации станков с чпу. Техническое обслуживание и ремонт
- •Подготовка станка к эксплуатации
- •Первоначальный пуск станка
- •Вопрос 17: Автооператоры,манипуляторы с ручным управлением,сбалансированные манипуляторы в машиностроение.
- •Манипуляторы для смены инструментов
- •Вопрос 18: Термины и определения в области робототехники.Основные показатели промышленных роботов. Общие характеристи и классификация. Общая характеристика и классификация
- •Роботизированные технологические комплексы
- •Вопрос 19: Координаты промышленных роботов. Структурные и кинематические схемы основных станочных промышленных роботов.
- •16.1. Характеристика основных типов деталей, изготавливаемых на станках групповым методом
- •Вопрос 20: Модульные конструкции прмышленных роботов, основных узлов, захватныхе устройства прмышленных роботов.
- •Промышленные роботы агрегатно-модульного типа.
- •Вопрос 21: Основы проектирования промышленных роботов.
- •Вопрос 22: Порядок проектирования и документация мрс.
- •Техническая документация проектов
- •Научно-исследовательские и экспериментальные работы в области станкостроения
- •Патентоспособность и патентная чистота
- •Стандартизация, унификация и агрегатирование в станкостроении
- •2. Коэффициент унификации по массе
- •Основы проектирования нормального (размерного) ряда типоразмеров станков
- •Требования техники безопасности и производственной санитарии
- •Технологичность деталей и узлов металлорежущих станков
- •Вопрос 25: Модель для оценки работоспособности станка. Процессы протекающие при работе станка.
- •Быстро протекающие процессы
- •Процессы средней скорости
- •Медленно протекающие процессы
- •Вопрос 26: Начальные показатели качества станка. Точность, прочность, жесткость, сопротивление усталости, динамическая точность. Модель для оценки работоспособности станка
- •Начальные (статические) показатели качества станка Геометрическая и кинематическая точность станков.
- •Вопрос 27: Стойкость станка к действию вредных процессов: колебательные процессы, износостойкость детали и узлов станка. Стойкость станка к действию вредных процессов
- •Вопрос 28: Анализ привода главного движения, используемых в мрс. Требования к приводам главного движения.
- •Основные требования к приводам главного движения.
- •Вопрос 29: Определение исходных данных для проектирования привода главного движения. Проектирование привода главного движения станка
- •Вопрос 30: Компоновки приводов главного движения для станков нормальной и высокой точности.
- •Вопрос 31: Графоаналитический расчет коробок скоростей. Граничные условия.
- •12.1 Стандартные значения знаменателя геометрического ряда при заданных значениях числа членов ряда
- •Вопрос 32: Простые и сложные структуры коробок скоростей. Переборная группа.
- •Вопрос 33: Проеектирование приводов главного движения с использованием многоскоростных электродвигателей.
- •Вопрос 34: Проектирование приводов главного движения с использованием вариаторов.
- •Вопрос 35: Способы управления переключением скоростей, блокировки. Однорукояточные механизмы и механизмы с предварительным набором скоростей и подач.
- •Способы переключения скоростей.
- •Вопрос 36: Выбор двигателя. Динамика привода главного движения.
- •Б) Двигатели в приводах главного движения станков с чпу. Их характеристики.
- •Привод с бесступенчатым регулированием скорости
- •Вопрос 38: Конструкции механизмов автоматической смены инструмента в шпинделях станков с чпу.
- •Особенности конструкций привода главного движения станков токарной группы с чпу. Особенности конструкции приводов главного движения станков с чпу фрезерно-сверлильно-расточной группы.
- •Конструирование наиболее характерных узлов и механизмов
- •Вопрос 40: Ременные передачи в приводах главного движения станков с чпу.
- •Литература
Особенности конструкций привода главного движения станков токарной группы с чпу. Особенности конструкции приводов главного движения станков с чпу фрезерно-сверлильно-расточной группы.
При проектировании приводов главного движение станков в зависимости от класса точности, используют совмещенный им раздельный привод обязательно устанавливаемый датчик резьбонарезания при мощности N ≤ 4 кВт можно устанавливать широкорегулируемые двигатели используемые в приводе подачи. Конструкция шпинделя должна иметь возможность установки механизма автоматического зажима заготовки.
Особенностью проектирования привода станков фрезерно-расточной группы является необходимость механизма крепления инструмента и датчика точного останова шпинделя в определенной позиции, это необходимо для автоматической смены инструмента т.к. позиционирование инструмента шпинделя станка осуществим по шпоночному пазу (см.вопрос № 39).
Перспективы развития приводов главного движения – это разработка модулей мотор – шпинделей для станков токарной группы. станков фрезерно-сверлильной-расточной группы и станков абразивной обработки. Такие приводы уже используют в наше время, они имеют все необходимые позиции: широкий диапазон регулирования; встроенные датчики обратной связи по скорости по углу положения, тормоз для быстрого останова и систему диагностики.
Конструирование наиболее характерных узлов и механизмов
При конструировании коробок скоростей стремятся упростить конструкцию и сделать ее более компактной за счет уменьшения числа ступеней, ограничения передаточного числа, в каждой передаче, которое для повышающей передачи выбирается, как правило, не более 2, а понижающей — не менее 1/4. В табл. 3.1 приведены некоторые способы совершенствования коробки скоростей.
Уменьшение осевых размеров достигается
а) рациональным расположением колес в подвижных блоках 1 и 2 (см. схемы 1—2; 3—4);
б) применением «связанных» колес 1 (схемы 5 и 6), при которых осевые размеры сокращаются на величину ширины колеса (см. схемы 3 и 4);
в) заменой тройного блока (схема 7) двойным блоком и перемещаемым отдельно колесом {схема 8) (иногда используют схему с тремя автономно перемещаемыми колесами взамен тройного блока);
г) использованием зубчатых муфт 1 и 2 (схемы 9 и 10) или при средних частотах вращения электромагнитных муфт 1 и 2 (рис. 3.1).
Уменьшение радиальных размеров коробок скоростей осуществляют
а) заменой трехваловой коробки двухваловой (схема 12);
б) рациональным распределением передаточных отношений между несколькими парами колес (схема 12). Например, общее передаточное отношение в показанном на схеме 12 положении распределено между колесами /—2, 3—4. Если большое передаточное отношение реализовывать в одной паре колес, то размеры коробки скоростей возрастают;
в) применением параллельно работающих передач (схема 13), благодаря чему мощность передается по параллельным потокам и размеры коробки скоростей существенно уменьшаются. Конструкция такой двухступенчатой коробки скоростей, пристыкован- ной непосредственно к двигателю Л показана на рис. 3.2;
г) соосной установкой валов (схема 14). Наглядным примером реализации этого способа является коробка скоростей на рис. 1.35, а;
л) применением планетарных передач (схема 15), благодаря чему можно обеспечить большое передаточное число и≥5 при сравнительной компактной конструкции коробки скоростей (см. также рис. 1.35, б; 1.69, схема 1; 2.24, б; 2.29, а).
Другие улучшения коробок скоростей направлены
а) на отключение неработающих передач. Например, в схеме 16 при переключении блока / вправо включается повышающая передача г2—2\, в результате чего может возникать повышенный шум. В схеме 17 прямое соединение входного и выходного валов происходит при перемещении колес 1 и 2 и отключении колес вала 3;
б) на блокировку муфт 1 и 2 переключения (схема 18) (в этом случае исключается необходимость электрической блокировки от неправильного включения муфт и упрощается механизм переключения скоростей);
в) на рациональное размещение проточек под вилку переключений (схема 19) для сокращения осевых размеров Ь. (Если проточки (величиной С^Ъ) расположить на обоих блоках 1 и 2ближе к опорам (как на блоке /), то размер коробки Ц для показанной схемы будет больше примерно на величину Ь, чем в схеме 19);
г) на использование шкивов (схема 20).
Часто ременную передачу от двигателя к шпинделю можно использовать для упрощения коробки скоростей (см. также рис. 1.54, а) и передачи максимальных частот вращения, минуя зубчатые колеса.
В табл. 3.2 показаны разновидности кинематических схем коробок скоростей на 2—4 ступени для регулируемых приводов главного движения. (Валы, расположенные на одной оси, условно приняты за один вал.) Наиболее распространенными являются двух- и трехваловые коробки с различными типами передач: прямозубыми (схемы 1, 4, 7, 10, 13), в которых переключение происходит за счет перемещения блока 1 и пересопряжения зацеплений колес; прямозубыми и косозубыми колесами (схемы 2, 5, 8, 11, 14), в которых перемещаемый блок / используется и как муфта; с только косозубыми колесами (схемы 3, 6, 9, 12, 15), в которых скорости переключаются муфтами 1 (схемы 3 и 6) и 2.
Конструкция простой коробки скоростей на две скорости показана на рис. 3.3. В ней не удается реализовать большое передаточное отношение, так как оно ограничено размерами колес.
Шпиндельный узел с двухступенчатой коробкой и прямозубыми колесами (схема 4 табл. 3.2) показан на рис. 3.4. Особенностью коробки является равномерное распределение передаточного отношения между двумя парами колес /—2 и 3—4, благодаря чему передаточное отношение существенно больше.
Конструкция компактной коробки скоростей приведена на рис. 3.5 (реализована идея схемы 2 табл. 3.2).
Вращение от двигателя 1 передается на вал 6 через двухступенчатую коробку скоростей, выполненную на базе зубчатого перебора 2—3, 4—5. Переключение скоростей происходит при перемещении муфты 7.
На рис. 3.6 показана конструкция автономной двухскоростной коробки скоростей с прямозубыми 1—2 и косозубыми 3—4 колесами.
Переключение скоростей производят осевым перемещением колеса / до его сцепления с муфтой 5. Выходной вал 6 коробки связан с выдвижным шпинделем горизонтально-расточного станка, поэтому он установлен в шпиндельных подшипниках.
На рис. 3.7 показана двухступенчатая коробка скоростей с большим передаточным отношением коробки φк, обеспечивающая широкий диапазон регулирования. Одна скорость реализуется при левом положении блока 8 через пару колес 10—9. Вторая ступень включается при правом положении колеса 8. В этом случае движение от двигателя 1 передается через три пары колес 2—3, 4—5, 6—7, обеспечивающих большое передаточное число (и≥8). На рис. 3.8 показан шпиндельный узел с трехступенчатой коробкой скоростей, переключение которых происходит при перемещении муфты 1 и блока 4—6. При левом положении муфты 1вращение на шпиндель передается через косозубые колеса 2—3;при этом блок 4—6 находится в нейтральном положении. В правом положении муфты / вращение передается через колеса 4—5 или 6—7 при соответствующем положении блока 4—6.
На рис. 3.9 показан шпиндельный узел токарного станка с четырехступенчатой коробкой скоростей. Скорости переключаются при перемещении колес /, 2 или 3.
Механизмы переключения скоростей.
Коробки скоростей с электромагнитными муфтами (рис. 3.1) не требуют специальных механизмов переключения. Во всех остальных случаях необходимо устройство для перемещения зубчатых колес (муфт). При этом должно быть обеспечено: 1) механизированный способ переключения; 2>) фиксация подвижного элемента в заданном положении; 3) индикация положения подвижного звена (контроль включения);
4) устранение попадания зубчатых колес и муфт «зуб в зуб» при переключении скоростей.
Наиболее часто применяют гидравлические (схемы рис. 3.10) или электромеханические устройства переключения. Для двухскоростной (или четырехскоростной) коробки скоростей используют механизм переключения на два положения (рис. 3.10, а). Конструктивное исполнение гидроцилиндра на два положения приведено на рис. 1.52, а и 3.3.
Особенность механизмов на три скорости (три положения блока) состоит в том, что должна осуществляться точная остановка подвижного блока как в крайних, что сравнительно просто, так и в среднем (как на рис. 3.10, б, в, г) положении. В схеме на рис. 3.10, б при одновременной подаче масла рх и р2 в полости с
разными площадями поршень 1 служит упором для рабочего поршня 2, связанного с вилкой переключения. Конструктивное исполнение механизма дано на рис. 3.11, а. В схемах на рис. 3.10, в, г точное среднее положение блока гарантируется благодаря тому, что втулка 1, имеющая возможность перемещения по штоку 2рабочего поршня, служит ему упором (ограничителем хода). В свою очередь, вследствие разницы площадей полостей, в которые подводится масло при переключении (р2 и р3 по схеме в и р\ и р2 по схеме г) втулка / перемещается до торца 3 в гидроцилиндре. Конструктивное исполнение механизма по схеме рис. 3.10, г приведено на рис, 3.11, б. Схема электромеханического устройства переключения изображена на рис. 3.12.
Вращение от двигателя 1 передается через пару колес 2 и 3на вал 4 и далее на кулачок 5. При вращении кулачка 5, имеющего профильный паз, происходит перемещение вилки 6, которая в требуемом положении фиксируется подпружиненным упором 7.
При гидравлическом переключении скоростей фиксаторы 3,4, 5 (рис. 3.11, б) часто используются и для индикации положения конечными выключателями 6, 7, 8. Иногда удерживание блока в заданном положении осуществляют с помощью «гидравлического замка». Для уменьшения опасности утыкания торцов зубьев при переключении скоростей предусматривают скругление профилей и медленное вращение привода в реверсивном режиме.
.
