- •1. C# и платформа .Net 7
- •2. Создание приложений .Net с использованием c# 38
- •3. Основы c# 71
- •4. Массивы, кортежи и строки 118
- •5. Классы и объекты 157
- •6. Перегрузка функций-членов класса 195
- •7. Наследование и полиморфизм 214
- •8. Обработка исключений 231
- •9. Интерфейсы, структуры и перечисления 255
- •10. Делегаты, события и лямбда-выражения 270
- •11. Обобщения 296
- •12. Коллекции, перечислители и итераторы 323
- •13. Время жизни объектов 370
- •1.C# и платформа .Net
- •1.1Становление c#
- •Язык c и api-интерфейс Windows
- •1.2Создание c#
- •Развитие c#
- •1.3Версии c#
- •1.4Связь c# со средой .Net Framework
- •Что нового в .Net Framework 4
- •1.5Общеязыковая исполняющая среда clr
- •1.6Общая система типов cts
- •1.7Общеязыковая спецификация cls
- •1.8Сборки
- •Приватные сборки
- •Разделяемые сборки
- •Однофайловые и многофайловые сборки
- •1.9Промежуточный язык cil
- •Утилита ildasm.Exe
- •1.10Классы и пространства имен Классы .Net Framework
- •Пространства имен
- •Роль корневого пространства Microsoft
- •1.11Общеязыковая инфраструктура cli
- •2.Создание приложений .Net с использованием c#
- •2.2Компилятор csc.Exe
- •Добавление ссылок на внешние сборки
- •Компиляция нескольких файлов исходного кода
- •Работа с ответными файлами в c#
- •2.3Типы приложений .Net
- •Создание приложений asp.Net
- •Возможности asp.Net
- •Элементы управления веб-сервера
- •Создание Windows-форм
- •Службы Windows
- •2.4Работа с Visual Studio 2010
- •2.5Создание проекта в VisualStudio 2010
- •2.6Изучение проекта и заполнение его кодом
- •2.7Компоновка проекта
- •2.8Отладка кода
- •2.9Рефакторинг кода
- •2.10Расширение кода
- •2.11Утилита Class Designer
- •2.12Интегрируемая система документации .Net Framework
- •3.Основы c#
- •3.1Основы ооп
- •3.2Простая программа на c#
- •3.3Комментарии
- •3.4Переменные
- •3.5Область видимости переменных, константы
- •3.6Типы данных
- •3.7Литералы
- •3.8Преобразования типов
- •3.9Арифметические операторы
- •3.10Операторы отношения и логические операторы
- •If (var1 & var2) Console.WriteLine("Данный текст не выведется");
- •3.11Оператор присваивания
- •3.12Поразрядные операторы
- •3.13Тернарный оператор
- •3.14Условные операторы
- •If (условие)
- •3.15Циклы for и while
- •3.16Циклы do while и foreach
- •3.17Операторы перехода
- •4.Массивы, кортежи и строки
- •4.1Массивы
- •4.2Многомерные массивы
- •4.3Ступенчатые (зубчатые) массивы
- •4.4Класс Array
- •4.5Создание динамического массива
- •4.6Массивы в качестве параметров
- •4.7Кортежи
- •4.8Строки
- •Построение строк
- •Постоянство строк
- •Работа со строками
- •Методы класса String
- •Методы работы со строками
- •Немного о сравнении строк в c#
- •4.9Класс StringBuilder
- •Методы класса StringBuilder
- •4.10Форматирующие строки
- •Спецификаторы формата для чисел
- •Спецификаторы формата для дат
- •4.11Регулярные выражения в c#
- •4.11.1Введение в регулярные выражения
- •Метасимволы, используемые в регулярных выражениях c#
- •4.11.2Использование регулярных выражений в c#
- •Структура перечисления RegexOptions
- •Метасимволы замены в регулярных выражениях c#
- •5.Классы и объекты
- •5.1Классы
- •Общая форма определения класса
- •Данные-члены
- •5.2Класс Object
- •5.2.1Методы System.Object
- •5.2.2Класс object как универсальный тип данных
- •5.3Создание объектов
- •5.3.1Переменные ссылочного типа и присваивание
- •5.3.2Инициализаторы объектов
- •5.4Методы
- •Объявление методов
- •Возврат из метода и возврат значения
- •Использование параметров
- •5.5Конструкторы
- •5.6Сборка мусора и деструкторы
- •Деструкторы
- •5.7Ключевое слово this
- •5.8Доступ к членам класса
- •Модификаторы доступа
- •Организация закрытого и открытого доступа
- •5.9Модификаторы параметров
- •Модификаторы параметров
- •5.9.1Модификатор ref
- •5.9.2Модификатор out
- •5.9.3Модификатор params
- •5.10Необязательные и именованные аргументы
- •5.10.1Необязательные аргументы
- •5.10.2Именованные аргументы
- •5.11Рекурсия
- •5.12Ключевое слово static
- •5.12.1Статические конструкторы
- •5.12.2Статические классы
- •5.13Индексаторы
- •5.13.1Одномерные индексаторы
- •5.13.2Многомерные индексаторы
- •5.14Свойства
- •Автоматически реализуемые свойства
- •5.15Модификаторы доступа в аксессорах
- •6.Перегрузка функций-членов класса
- •6.1Перегрузка методов
- •6.2Перегрузка конструкторов
- •6.3Перегрузка индексаторов
- •6.4Основы перегрузки операторов
- •6.4.1Перегрузка бинарных операторов
- •6.4.2Перегрузка унарных операторов
- •6.4.3Выполнение операций со встроенными в c# типами данных
- •6.5Перегрузка операторов отношения и операторов true - false
- •6.5.1Перегрузка операторов отношения
- •6.5.2Перегрузка операторов true и false
- •6.6Перегрузка логических операторов
- •6.6.1Перегрузка укороченных логических операторов
- •6.7Операторы преобразования
- •7.Наследование и полиморфизм
- •7.1Основы наследования
- •7.2Защищенный доступ и исключение наследования
- •7.2.1Организация защищенного доступа
- •7.2.2Ключевое слово sealed
- •7.2.3Диаграммы классов Visual Studio
- •7.3Конструкторы и наследование
- •7.4Наследование и сокрытие имен
- •Применение ключевого слова base для доступа к скрытому имени
- •7.5Ссылки на базовый класс и объекты производных классов
- •7.6Виртуальные методы, свойства и индексаторы
- •7.7Абстрактные классы
- •8.Обработка исключений
- •8.1Основы обработки исключений
- •8.1.1Роль обработки исключений в .Net
- •8.1.2Составляющие процесса обработки исключений в .Net
- •8.2Перехват исключений
- •8.3Класс Exception
- •8.4Конфигурирование состояния исключения
- •8.4.1Свойство TargetSite
- •8.4.2Свойство StackTrace
- •8.4.3Свойство HelpLink
- •8.4.4Свойство Data
- •8.5Исключения уровня системы и приложения
- •8.5.1Исключения уровня системы (System.SystemException)
- •8.5.2Исключения уровня приложения (System.ApplicationException)
- •8.5.3Создание специальных исключений
- •8.6Обработка многочисленных исключений
- •8.6.1Применение нескольких операторов catch
- •1 2 0 10 12 Индекс выходит за пределы
- •8.6.2Перехват всех исключений
- •8.6.3Вложение блоков try
- •8.7Операторы throw и finally
- •8.7.1Оператор throw
- •8.7.2Повторное генерирование исключений
- •8.7.3Использование блока finally
- •8.8Исключения, связанные с поврежденным состоянием (Corrupted State Exceptions)
- •8.9Ключевые слова checked и unchecked
- •9.Интерфейсы, структуры и перечисления
- •9.1Интерфейсы
- •9.2Интерфейсные ссылки
- •9.2.1Ключевое слово as
- •9.2.2Ключевое слово is
- •9.3Интерфейсные свойства и индексаторы
- •9.3.1Интерфейсные свойства
- •9.3.2Интерфейсные индексаторы
- •9.4Наследование интерфейсов
- •9.5Явная реализация интерфейса
- •9.6Структуры
- •Назначение структур
- •9.7Перечисления
- •10.Делегаты, события и лямбда-выражения
- •10.1Делегаты
- •10.1.1Определение типа делегата в c#
- •10.1.2Базовые классы System.MulticastDelegate и System.Delegate
- •10.2Групповой вызов и адресация делегируемых методов
- •10.2.1Групповое преобразование делегируемых методов
- •10.2.2Применение методов экземпляра в качестве делегатов
- •10.2.3Групповая адресация
- •10.3Ковариантность и контравариантность делегатов
- •10.5Анонимные методы
- •10.6Лямбда-выражения
- •10.6.1Одиночные лямбда-выражения
- •10.6.2Блочные лямбда-выражения
- •10.7События
- •10.8Аксессоры событий
- •10.9Обработка событий в среде .Net Framework
- •Void обработчик(object отправитель, EventArgs е)
- •11.Обобщения
- •11.1Обзор обобщений
- •Рекомендации по именованию
- •11.2Обобщенные классы
- •11.3Ограниченные типы
- •Связь между параметрами типа с помощью ограничений
- •11.4Ограниченные классы
- •11.5Ограниченные интерфейсы и конструкторы Применение ограничения на интерфейс
- •Применение ограничения new() на конструктор
- •11.6Ограничения ссылочного типа и типа значения
- •11.7Иерархии обобщенных классов
- •11.8Средства обобщений Значения по умолчанию
- •Статические члены
- •11.9Обобщенные методы
- •11.10Обобщенные структуры
- •11.11Обобщенные делегаты
- •11.12Обобщенные интерфейсы
- •Сравнение экземпляров параметра типа
- •11.13Модификация обобщенных методов
- •11.13.1Переопределение виртуальных методов в обобщенном классе
- •11.13.2Перегрузка методов с несколькими параметрами типа
- •11.14Ковариантность и контравариантность в обобщениях
- •11.14.1Применение ковариантности в обобщенном интерфейсе
- •11.14.2Применение контравариантности в обобщенном интерфейсе
- •12.Коллекции, перечислители и итераторы
- •12.1Краткий обзор коллекций
- •12.2Необобщенные коллекции
- •12.2.1Интерфейсы необобщенных коллекций
- •12.2.2Структура DictionaryEntry
- •12.2.3Классы необобщенных коллекций
- •12.3Обобщенные коллекции
- •12.3.1Интерфейсы обобщенных коллекций
- •12.3.3Классы обобщенных коллекций
- •12.4Класс ArrayList
- •12.5Класс Hashtable
- •12.10.1Тип ключа
- •12.13Битовые коллекции
- •12.13.1Класс BitArray
- •12.13.2Структура BitVector32
- •12.14Специальные и наблюдаемые коллекции
- •12.14.1Специальные коллекции
- •12.14.2Наблюдаемые коллекции
- •12.15Параллельные коллекции
- •12.16Реализация интерфейса iComparable
- •12.17Реализация интерфейса iComparer
- •12.18Перечислители
- •12.18.1Применение обычного перечислителя
- •12.18.2Применение перечислителя типа iDictionaryEnumerator
- •12.19Реализация интерфейсов iEnumerable и iEnumerator
- •12.20Итераторы
- •13.Время жизни объектов
- •13.1Базовые сведения о времени жизни объектов
- •Установка объектных ссылок в null
- •13.2Роль корневых элементов приложения
- •Поколения объектов
- •13.3Параллельная и фоновая сборка мусора Параллельная сборка мусора в версиях .Net 1.0 - .Net 3.5
- •Фоновая сборка мусора в версии .Net 4.0
- •13.5Финализируемые объекты
- •Переопределение System.Object.Finalize()
- •Описание процесса финализации
- •13.6Высвобождаемые объекты
- •Повторное использование ключевого слова using в c#
- •13.7Финализируемые и высвобождаемые типы
- •Формализованный шаблон очистки
- •13.8Отложенная инициализация объектов
- •Полезные ссылки
3.6Типы данных
Типы данных имеют особенное значение в C#, поскольку это строго типизированный язык. Это означает, что все операции подвергаются строгому контролю со стороны компилятора на соответствие типов, причем недопустимые операции не компилируются. Следовательно, строгий контроль типов позволяет исключить ошибки и повысить надежность программ. Для обеспечения контроля типов все переменные, выражения и значения должны принадлежать к определенному типу. Такого понятия, как "бестиповая" переменная, в данном языке программирования вообще не существует. Более того, тип значения определяет те операции, которые разрешается выполнять над ним. Операция, разрешенная для одного типа данных, может оказаться недопустимой для другого.
В C# имеются две общие категории встроенных типов данных: типы значений и ссылочные типы. Они отличаются по содержимому переменной. Концептуально разница между ними состоит в том, что тип значения (value type) хранит данные непосредственно, в то время как ссылочный тип (reference type) хранит ссылку на значение.
Эти типы сохраняются в разных местах памяти: типы значений сохраняются в области, известной как стек, а ссылочные типы — в области, называемой управляемой кучей.
|
Давайте разберем типы значений.
Целочисленные типы
В C# определены девять целочисленных типов: char, byte, sbyte, short, ushort, int, uint, long и ulong. Но тип char применяется, главным образом, для представления символов и поэтому рассматривается отдельно. Остальные восемь целочисленных типов предназначены для числовых расчетов. Ниже представлены их диапазон представления чисел и разрядность в битах:
Целочисленные типы C#
Тип |
Тип CTS |
Разрядность в битах |
Диапазон |
byte |
System.Byte |
8 |
0:255 |
sbyte |
System.SByte |
8 |
-128:127 |
short |
System.Int16 |
16 |
-32768 : 32767 |
ushort |
System.UInt16 |
16 |
0 : 65535 |
int |
System.Int32 |
32 |
-2147483648 : 2147483647 |
uint |
System.UInt32 |
32 |
0 : 4294967295 |
long |
System.Int64 |
64 |
-9223372036854775808 : 9223372036854775807 |
ulong |
System.UInt64 |
64 |
0 : 18446744073709551615 |
Как следует из приведенной выше таблицы, в C# определены оба варианта различных целочисленных типов: со знаком и без знака. Целочисленные типы со знаком отличаются от аналогичных типов без знака способом интерпретации старшего разряда целого числа. Так, если в программе указано целочисленное значение со знаком, то компилятор C# сгенерирует код, в котором старший разряд целого числа используется в качестве флага знака. Число считается положительным, если флаг знака равен 0, и отрицательным, если он равен 1.
Отрицательные числа практически всегда представляются методом дополнения до двух, в соответствии с которым все двоичные разряды отрицательного числа сначала инвертируются, а затем к этому числу добавляется 1.
Вероятно, самым распространенным в программировании целочисленным типом является тип int. Переменные типа int нередко используются для управления циклами, индексирования массивов и математических расчетов общего назначения. Когда же требуется целочисленное значение с большим диапазоном представления чисел, чем у типа int, то для этой цели имеется целый ряд других целочисленных типов.
Так, если значение нужно сохранить без знака, то для него можно выбрать тип uint, для больших значений со знаком — тип long, а для больших значений без знака — тип ulong. В качестве примера ниже приведена программа, вычисляющая расстояние от Земли до Солнца в сантиметрах. Для хранения столь большого значения в ней используется переменная типа long:
using System;
namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
long result;
const long km = 149800000; // расстояние в км.
result = km * 1000 * 100;
Console.WriteLine(result);
Console.ReadLine();
}
}
}
Всем целочисленным переменным значения могут присваиваться в десятичной или шестнадцатеричной системе обозначений. В последнем случае требуется префикс Ох:
long x = 0x12ab;
Если возникает какая-то неопределенность относительно того, имеет ли целое значение тип int, uint, long или ulong, то по умолчанию принимается int. Чтобы явно специфицировать, какой другой целочисленный тип должно иметь значение, к числу можно добавлять следующие символы:
uint ui = 1234U;
long l = 1234L;
ulong ul = 1234UL;
U и L можно также указывать в нижнем регистре, хотя строчную "L' легко зрительно спутать с цифрой 1 (единица).
Типы с плавающей точкой
Типы с плавающей точкой позволяют представлять числа с дробной частью. В C# имеются две разновидности типов данных с плавающей точкой: float и double. Они представляют числовые значения с одинарной и двойной точностью соответственно. Так, разрядность типа float составляет 32 бита, что приближенно соответствует диапазону представления чисел от 5Е-45 до 3,4Е+38. А разрядность типа double составляет 64 бита, что приближенно соответствует диапазону представления чисел от 5Е-324 до 1,7Е+308.
Тип данных float предназначен для меньших значений с плавающей точкой, для которых требуется меньшая точность. Тип данных double больше, чем float, и предлагает более высокую степень точности (15 разрядов).
Если нецелочисленное значение жестко кодируется в исходном тексте (например, 12.3), то обычно компилятор предполагает, что подразумевается значение типа double. Если значение необходимо специфицировать как float, потребуется добавить к нему символ F (или f):
float f = 12.3F;
Десятичный тип данных
Для представления чисел с плавающей точкой высокой точности предусмотрен также десятичный тип decimal, который предназначен для применения в финансовых расчетах. Этот тип имеет разрядность 128 бит для представления числовых значений в пределах от 1Е -28 до 7,9Е+28. Вам, вероятно, известно, что для обычных арифметических вычислений с плавающей точкой характерны ошибки округления десятичных значений. Эти ошибки исключаются при использовании типа decimal, который позволяет представить числа с точностью до 28 (а иногда и 29) десятичных разрядов. Благодаря тому что этот тип данных способен представлять десятичные значения без ошибок округления, он особенно удобен для расчетов, связанных с финансами:
using System;
namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
// *** Расчет стоимости капиталовложения с ***
// *** фиксированной нормой прибыли***
decimal money, percent;
int i;
const byte years = 15;
money = 1000.0m;
percent = 0.045m;
for (i = 1; i <= years; i++)
{
money *= 1 + percent;
}
Console.WriteLine("Общий доход за {0} лет: {1} $$",years,money);
Console.ReadLine();
}
}
}
Результатом работы данной программы будет:
|
Символы
В C# символы представлены не 8-разрядным кодом, как во многих других языках программирования, например С++, а 16-разрядным кодом, который называется юникодом (Unicode). В юникоде набор символов представлен настолько широко, что он охватывает символы практически из всех естественных языков на свете. Если для многих естественных языков, в том числе английского, французского и немецкого, характерны относительно небольшие алфавиты, то в ряде других языков, например китайском, употребляются довольно обширные наборы символов, которые нельзя представить 8-разрядным кодом. Для преодоления этого ограничения в C# определен тип char, представляющий 16-разрядные значения без знака в пределах от 0 до 65 535. При этом стандартный набор символов в 8-разрядном коде ASCII является подмножеством юникода в пределах от 0 до 127. Следовательно, символы в коде ASCII по-прежнему остаются действительными в C#.
Для того чтобы присвоить значение символьной переменной, достаточно заключить это значение (т.е. символ) в одинарные кавычки:
char ch;
ch = 'Z';
Несмотря на то, что тип char определен в C# как целочисленный, его не следует путать со всеми остальными целочисленными типами. Дело в том, что в C# отсутствует автоматическое преобразование символьных значений в целочисленные и обратно. Например, следующий фрагмент кода содержит ошибку:
char ch;
ch = 8; // ошибка, не выйдет
Наравне с представлением char как символьных литералов, их можно представлять как 4-разрядные шестнадцатеричные значения Unicode (например, '\u0041'), целочисленные значения с приведением (например, (char) 65) или же шестнадцатеричные значения (например, '\x0041'). Кроме того, они могут быть представлены в виде управляющих последовательностей.
Логический тип данных
Тип bool представляет два логических значения: "истина" и "ложь". Эти логические значения обозначаются в C# зарезервированными словами true и false соответственно. Следовательно, переменная или выражение типа bool будет принимать одно из этих логических значений. Кроме того, в C# не определено взаимное преобразование логических и целых значений. Например, 1 не преобразуется в значение true, а 0 — в значение false.
