- •Издательство
- •Оглавление
- •Глава 1. Общие сведения о системах автоматизированного проектирования.………………….…..11
- •Глава 2. Алгоритм автоматизированного проектирования …….…………………………………………………….22
- •Глава 3. Состав системы автоматизированного проектирования …….……………………………………………..………29
- •Глава 4. Техническое обеспечение систем автоматизированного проектирования ……………………..39
- •Глава 5. Лингвистическое обеспечение систем автоматизированного проектирования ……………………..65
- •Глава 6. Математическое обеспечение систем автоматизированного проектирования ……………………..71
- •6.1. Виды математического обеспечения сапр эп……………………..71
- •Глава 7. Математические модели механической части систем электропривода ........................................................................72
- •Глава 8. Математические модели системы электропривода с двигателем постоянного тока независимого возбуждения………………………………………….83
- •Глава 14. Математические модели силовых преобразователей в системе электропривода ……………………………………………………………………………………157
- •Глава 15. Математические модели аналоговых датчиков в системе электропривода …………………………………………164
- •Глава 16. Математические модели аналоговых регуляторов в системе электропривода ……………………..167
- •Глава 17. Математические модели цифровых регуляторов в системе электропривода …………………….171
- •Глава 18. Математические модели систем электропривода и их методы анализа ………………………179
- •Глава 19. Функциональный синтез систем электропривода………………………………………………………….188
- •Глава 20. Программное обеспечение систем автоматизированного проектирования электроприводов ………………………………………………………..217
- •Глава 21. Информационное обеспечение систем автоматизированного проектирования электроприводов ……………………………………………………………………………………..229
- •Глава 22. Характеристика современных систем автоматизированного проектирования ……………………239
- •Введение
- •3.2. Состав сапр
- •4.3. Связь в вычислительных сетях
- •4.4. Классификация то сапр
- •4.6. Структура корпоративной сапр
- •4.10. Состав устройств арм
- •4.11. Эвм в арм сапр
- •5.2. Характеристика языков сапр
- •5.3. Языковые процессоры
- •Глава 6. Математическое обеспечение систем автоматизированного проектирования
- •6.2. Функциональная схема системы электропривода
- •Глава 7. Математические модели механической части систем электропривода
- •7.1. Понятие о механической части систем электропривода
- •7.2. Математическая модель одномассовой механической части сэп с постоянным моментом инерции
- •7.3. Математическая модель одномассовой механической части сэп с переменным моментом инерции
- •7.4. Математическая модель многомассовой механической части сэп
- •7.5. Математическая модель механической части системы взаимосвязанного электропривода
- •7.6. Математическая модель одномассовой механической части сэп с постоянным моментом инерции в форме уравнения состояния
- •7.7. Математическая модель одномассовой механической части сэп с постоянным моментом инерции в форме структурной схемы
- •7.8. Классификация моментов нагрузки
- •7.9. Математическая модель одномассовой механической части сэп с постоянным моментом инерции и с реактивным моментом нагрузки в форме структурной схемы
- •7.10. Примеры реализации математической модели механической части системы электропривода (мч сэп) в форме структурной схемы в формате программного пакета Matlab
- •Пример 4. Моделирование механической части системы электропривода (мч сэп) в форме структурной схемы в формате программного пакета Matlab
- •Глава 8. Математические модели системы электропривода с двигателем постоянного тока независимого возбуждения
- •8.1. Уравнения для двигателя постоянного тока независимого возбуждения
- •Итак, для дпт с нв имеются два уравнения:
- •8.2. Уравнения состояния для дпт с нв
- •8.4. Преобразование структурной схемы модели электропривода с дпт нв независимого возбуждения
- •Выполним третье преобразование полученной структурной схемы математической модели дпт с нв на рис. 4. Для этого воспользуемся правилами преобразования структурных схем, известных в тау (см. Рис.5).
- •8.6. Математическая модель электропривода с двигателем постоянного тока независимого возбуждения в форме передаточной функции
- •8.7. Примеры моделирования электропривода с двигателем постоянного тока независимого возбуждения
- •Глава 9. Математические модели системы электропривода с двигателем постоянного тока независимого возбуждения при двухзонном регулировании
- •9.1. Математическая модель дпт с нв при управлении по двум каналам Управление дпт с нв можно осуществлять изменением напряжения: в цепи якоря;
- •При изменении (уменьшении) напряжения уменьшается ток в обмотке возбуждения и величина магнитного потока .
- •9.2. Математическая модель дпт с нв при управлении по двум каналам в форме структурной схемы
- •9.3. Примеры моделирования электропривода с дпт с нв при управлении по двум каналам в форме структурной схемы
- •Глава 10. Математические модели системы электропривода с двигателем постоянного тока последовательного возбуждения
- •10.1. Математическая модель дпт с последовательным возбуждением (пв)
- •10.3. Примеры моделирования электропривода с дпт с пв в форме структурной схемы
- •Глава 11. Математическая модель асинхронного двигателя на основе схемы замещения
- •11.1. Общие сведения об асинхронном электроприводе
- •11.3. Принцип и режимы работы ад
- •Уравнения асинхронной машины при заторможенном роторе аналогичны уравнениям трансформатора.
- •- Приведенный ток ротора;
- •Глава 12. Математические модели системы электропривода с асинхронным двигателем без учета электромагнитной инерции
- •12.1. Подходы к разработке математической модели ад
- •12.3. Примеры моделирования электропривода с ад в форме структурной схемы
- •Глава 13. Математические модели системы электропривода с асинхронным двигателем с учетом электромагнитной инерции
- •13.3. Основы разработки математической модели ад (современный подход)
- •13.4. Уравнения для цепей статора и ротора ад с применением обобщенных векторов
- •13.5. Потокосцепления статора и ротора ад
- •13.6. Индуктивности и взаимные индуктивности обмоток статора и ротора ад
- •13.7. Обобщенные потокосцепления обмоток статора и ротора ад
- •13.8. Особенности, свойства и преобразования «обобщенного» вектора и уравнений с «обобщенным» вектором
- •13.9. Представление «обобщенного» вектора на комплексной плоскости
- •13.10. Преобразование «обобщенного» вектора на комплексной плоскости в разных системах координат
- •13.11. Преобразование «обобщенных» векторов потокосцеплений статора и ротора ад при записи в другой системе координат
- •13.12. Преобразование уравнений статора и ротора для записи в общей системе координат
- •13.13. Понятие об эдс вращения в векторных уравнениях ад
- •13.14. Уравнения статора и ротора ад в векторной форме
- •13.15. Обобщенная электрическая машина (оэм)
- •13.16. Электромагнитный момент ад
- •13.17. Подготовка уравнений модели короткозамкнутого ад при частотном управлении
- •13.19. Подготовка уравнений для построения модели ад с кз ротором при частотном управлении в форме структурной схемы
- •13.20. Модель ад с кз ротором при частотном управлении в форме структурной схемы
- •13.21. Классическая математическая модель ад с кз ротором при частотном управлении в форме уравнений состояния
- •13.22. Пример моделирования ад с кз ротором при частотном управлении
- •Глава 14. Математические модели силовых преобразователей в системе электропривода
- •14.1. Классификация силовых преобразователей в системах электропривода
- •14.2. Тиристорный преобразователь
- •14.3. Широтно-импульсный преобразователь (шип)
- •14.4. Частотно-импульсный преобразователь (чип)
- •14.5. Тиристорный регулятор напряжения
- •14.6. Преобразователь частоты (пч)
- •14.7. Характеристики сп
- •14.8. Виды математических моделей силовых преобразователей в форме структурной схемы
- •Глава 15. Математические модели аналоговых датчиков в системе электропривода
- •15.1. Классификация датчиков в системах электропривода и управления
- •15.2. Характеристики датчиков
- •15.3. Виды математических моделей датчиков в форме структурной схемы
- •Глава 16. Математические модели аналоговых регуляторов в системе электропривода
- •16.1. Классификация регуляторов в системах электропривода и управления
- •16.2. Структура регуляторов
- •16.3. Структура пид - регулятора
- •16.4. Структура пи - регулятора
- •16.5. Структура пд - регулятора
- •16.6. Структура п - регулятора
- •Глава 17. Математические модели цифровых регуляторов в системе электропривода
- •17.1. Математическая модель аналоговых регуляторов в системе электропривода
- •17.2. Дискретные сигналы
- •17.3. Уравнения пид - регулятора в дискретной форме
- •17.4. Рекуррентные уравнения пид – регулятора
- •17.5. Анализ дискретной модели пид - регулятора
- •17.6. Структурная схема алгоритма программной реализации цифрового пид - регулятора
- •Глава 18. Математические модели систем электропривода и методы их анализа
- •18.1. Общие представления о математических моделях систем электропривода
- •18.2. Пример математической модели системы электропривода
- •18.3. Классификация методов численного интегрирования дифференциальных уравнений математической модели системы электропривода
- •18.4. Численное интегрирование дифференциальных уравнений математической модели системы электропривода методом Эйлера
- •Уравнения (18) и (19) являются алгебраическими уравнениями, которые легко реализуются на любом языке программирования.
- •18.7. Алгоритм моделирования системы электропривода по методу структурных схем
- •Глава 19. Функциональный синтез систем электропривода
- •19.1 Общие сведения о синтезе системы электропривода
- •19.3. Функциональный синтез разомкнутой системы электропривода при управлении пуском
- •19.4. Функциональный синтез системы электропривода с отрицательной обратной связью
- •19.5. Функциональный синтез системы электропривода с подчиненным регулированием
- •19.6. Анализ результатов функционального синтеза системы электропривода
- •Глава 20. Программное обеспечение систем автоматизированного проектирования электроприводов
- •20.1. Программные характеристики сапр
- •21.1. Основное назначение ио сапр
- •21.2. Виды информации в сапр
- •Глава 22. Характеристика современных систем автоматизированного проектирования
- •22.1. Назначение ElectriCs Pro
- •22.2. Характеристика ElectriCs Pro
- •22.3. Последовательность проектирования в сапр cadElectro
- •Заключение
- •Библиографический список
- •1. Крячко в. П., Курейчик в.М., Норенков и.П. Теоретические основы сапр: Учеб. Для вузов.-м.:Энергоатомиздат,1987.
- •2. Норенков и. П., Манычев в. Б. Основы теории и проектирования сапр:Учеб. Для втузов.-м.:Высш. Шк.,1990.
- •3. Аветисян д.А. Автоматизация проектирования электрических систем. — м.: Высшая школа, 1998.
Глава 14. Математические модели силовых преобразователей в системе электропривода ……………………………………………………………………………………157
14.1. Классификация силовых преобразователей в системах электропривода …………………………………………………………………157
14.2. Тиристорный преобразователь …………………………………...157
14.3. Широтно-импульсный преобразователь (ШИП)………………...158
14.4. Частотно-импульсный преобразователь (ЧИП)………………….159
14.5. Тиристорный регулятор напряжения …………………………….159
14.6. Преобразователь частоты (ПЧ)……………………………………160
14.7. Характеристики СП………………………………………………...161
14.8. Виды математических моделей силовых преобразователей в форме структурной схемы……………………………………………………………...162
Глава 15. Математические модели аналоговых датчиков в системе электропривода …………………………………………164
15.1. Классификация датчиков в системах электропривода и
управления …………………………………………………………………164
15.2. Характеристики датчиков……………………………………………164
15.3. Виды математических моделей датчиков в форме
структурной схемы…………………………………………………………165
Глава 16. Математические модели аналоговых регуляторов в системе электропривода ……………………..167
16.1. Классификация регуляторов в системах
электропривода и управления …………………………………………….167
16.2. Структура регуляторов ……………………………………………...167
16.3. Структура ПИД – регулятора……………………………………….168
16.4. Структура ПИ – регулятора…………………………………………169
16.5. Структура ПД – регулятора…………………………………………169
16.6. Структура П – регулятора……………………………………………170
Глава 17. Математические модели цифровых регуляторов в системе электропривода …………………….171
17.1. Математическая модель аналоговых регуляторов
в системе электропривода ………………………………………………………171
17.2. Дискретные сигналы………………………………………………...171
17.3. Уравнения ПИД - регулятора в дискретной форме……………….172
17.4. Рекуррентные уравнения ПИД – регулятора………………………172
17.5. Анализ дискретной модели ПИД – регулятора……………………174
17.6. Структурная схема алгоритма программной
реализации цифрового ПИД – регулятора……………………………… 174
Глава 18. Математические модели систем электропривода и их методы анализа ………………………179
18.1. Общие представления о математических моделях
систем электропривода …………………………………………………………179
18.2. Пример математической модели системы
электропривода …………………………………………………………..180
18.3. Классификация методов численного
интегрирования дифференциальных уравнений математической
модели системы электропривода……………………………………………….182
18.4. Численное интегрирование дифференциальных
уравнений математической модели системы электропривода
методом Эйлера………………………………………………………………….183
18.5. Численное интегрирование дифференциальных
уравнений математической модели системы электропривода
методом А. В. Башарина………………………………………………………...184
18.6. Алгоритм моделирования системы электропривода
по методу уравнений состояния………………………………………………...185
18.7. Алгоритм моделирования системы электропривода
по методу структурных схем……………………………………………………186
Глава 19. Функциональный синтез систем электропривода………………………………………………………….188
19.1 Общие сведения о синтезе системы
электропривода …………………………………………………………………188
19.2. Классификация и краткая характеристика методов
синтеза системы электропривода ……………………………………………..193
19.3. Функциональный синтез разомкнутой системы
электропривода при управлении пуском……………………………………..193
19.4. Функциональный синтез системы электропривода с отрицательной обратной связью………………………………………………………………..198
19.5. Функциональный синтез системы электропривода с подчиненным
регулированием……………………………………………………………202
19.6. Анализ результатов функционального синтеза системы электропривода…………………………………………………………………..207
