- •Издательство
- •Оглавление
- •Глава 1. Общие сведения о системах автоматизированного проектирования.………………….…..11
- •Глава 2. Алгоритм автоматизированного проектирования …….…………………………………………………….22
- •Глава 3. Состав системы автоматизированного проектирования …….……………………………………………..………29
- •Глава 4. Техническое обеспечение систем автоматизированного проектирования ……………………..39
- •Глава 5. Лингвистическое обеспечение систем автоматизированного проектирования ……………………..65
- •Глава 6. Математическое обеспечение систем автоматизированного проектирования ……………………..71
- •6.1. Виды математического обеспечения сапр эп……………………..71
- •Глава 7. Математические модели механической части систем электропривода ........................................................................72
- •Глава 8. Математические модели системы электропривода с двигателем постоянного тока независимого возбуждения………………………………………….83
- •Глава 14. Математические модели силовых преобразователей в системе электропривода ……………………………………………………………………………………157
- •Глава 15. Математические модели аналоговых датчиков в системе электропривода …………………………………………164
- •Глава 16. Математические модели аналоговых регуляторов в системе электропривода ……………………..167
- •Глава 17. Математические модели цифровых регуляторов в системе электропривода …………………….171
- •Глава 18. Математические модели систем электропривода и их методы анализа ………………………179
- •Глава 19. Функциональный синтез систем электропривода………………………………………………………….188
- •Глава 20. Программное обеспечение систем автоматизированного проектирования электроприводов ………………………………………………………..217
- •Глава 21. Информационное обеспечение систем автоматизированного проектирования электроприводов ……………………………………………………………………………………..229
- •Глава 22. Характеристика современных систем автоматизированного проектирования ……………………239
- •Введение
- •3.2. Состав сапр
- •4.3. Связь в вычислительных сетях
- •4.4. Классификация то сапр
- •4.6. Структура корпоративной сапр
- •4.10. Состав устройств арм
- •4.11. Эвм в арм сапр
- •5.2. Характеристика языков сапр
- •5.3. Языковые процессоры
- •Глава 6. Математическое обеспечение систем автоматизированного проектирования
- •6.2. Функциональная схема системы электропривода
- •Глава 7. Математические модели механической части систем электропривода
- •7.1. Понятие о механической части систем электропривода
- •7.2. Математическая модель одномассовой механической части сэп с постоянным моментом инерции
- •7.3. Математическая модель одномассовой механической части сэп с переменным моментом инерции
- •7.4. Математическая модель многомассовой механической части сэп
- •7.5. Математическая модель механической части системы взаимосвязанного электропривода
- •7.6. Математическая модель одномассовой механической части сэп с постоянным моментом инерции в форме уравнения состояния
- •7.7. Математическая модель одномассовой механической части сэп с постоянным моментом инерции в форме структурной схемы
- •7.8. Классификация моментов нагрузки
- •7.9. Математическая модель одномассовой механической части сэп с постоянным моментом инерции и с реактивным моментом нагрузки в форме структурной схемы
- •7.10. Примеры реализации математической модели механической части системы электропривода (мч сэп) в форме структурной схемы в формате программного пакета Matlab
- •Пример 4. Моделирование механической части системы электропривода (мч сэп) в форме структурной схемы в формате программного пакета Matlab
- •Глава 8. Математические модели системы электропривода с двигателем постоянного тока независимого возбуждения
- •8.1. Уравнения для двигателя постоянного тока независимого возбуждения
- •Итак, для дпт с нв имеются два уравнения:
- •8.2. Уравнения состояния для дпт с нв
- •8.4. Преобразование структурной схемы модели электропривода с дпт нв независимого возбуждения
- •Выполним третье преобразование полученной структурной схемы математической модели дпт с нв на рис. 4. Для этого воспользуемся правилами преобразования структурных схем, известных в тау (см. Рис.5).
- •8.6. Математическая модель электропривода с двигателем постоянного тока независимого возбуждения в форме передаточной функции
- •8.7. Примеры моделирования электропривода с двигателем постоянного тока независимого возбуждения
- •Глава 9. Математические модели системы электропривода с двигателем постоянного тока независимого возбуждения при двухзонном регулировании
- •9.1. Математическая модель дпт с нв при управлении по двум каналам Управление дпт с нв можно осуществлять изменением напряжения: в цепи якоря;
- •При изменении (уменьшении) напряжения уменьшается ток в обмотке возбуждения и величина магнитного потока .
- •9.2. Математическая модель дпт с нв при управлении по двум каналам в форме структурной схемы
- •9.3. Примеры моделирования электропривода с дпт с нв при управлении по двум каналам в форме структурной схемы
- •Глава 10. Математические модели системы электропривода с двигателем постоянного тока последовательного возбуждения
- •10.1. Математическая модель дпт с последовательным возбуждением (пв)
- •10.3. Примеры моделирования электропривода с дпт с пв в форме структурной схемы
- •Глава 11. Математическая модель асинхронного двигателя на основе схемы замещения
- •11.1. Общие сведения об асинхронном электроприводе
- •11.3. Принцип и режимы работы ад
- •Уравнения асинхронной машины при заторможенном роторе аналогичны уравнениям трансформатора.
- •- Приведенный ток ротора;
- •Глава 12. Математические модели системы электропривода с асинхронным двигателем без учета электромагнитной инерции
- •12.1. Подходы к разработке математической модели ад
- •12.3. Примеры моделирования электропривода с ад в форме структурной схемы
- •Глава 13. Математические модели системы электропривода с асинхронным двигателем с учетом электромагнитной инерции
- •13.3. Основы разработки математической модели ад (современный подход)
- •13.4. Уравнения для цепей статора и ротора ад с применением обобщенных векторов
- •13.5. Потокосцепления статора и ротора ад
- •13.6. Индуктивности и взаимные индуктивности обмоток статора и ротора ад
- •13.7. Обобщенные потокосцепления обмоток статора и ротора ад
- •13.8. Особенности, свойства и преобразования «обобщенного» вектора и уравнений с «обобщенным» вектором
- •13.9. Представление «обобщенного» вектора на комплексной плоскости
- •13.10. Преобразование «обобщенного» вектора на комплексной плоскости в разных системах координат
- •13.11. Преобразование «обобщенных» векторов потокосцеплений статора и ротора ад при записи в другой системе координат
- •13.12. Преобразование уравнений статора и ротора для записи в общей системе координат
- •13.13. Понятие об эдс вращения в векторных уравнениях ад
- •13.14. Уравнения статора и ротора ад в векторной форме
- •13.15. Обобщенная электрическая машина (оэм)
- •13.16. Электромагнитный момент ад
- •13.17. Подготовка уравнений модели короткозамкнутого ад при частотном управлении
- •13.19. Подготовка уравнений для построения модели ад с кз ротором при частотном управлении в форме структурной схемы
- •13.20. Модель ад с кз ротором при частотном управлении в форме структурной схемы
- •13.21. Классическая математическая модель ад с кз ротором при частотном управлении в форме уравнений состояния
- •13.22. Пример моделирования ад с кз ротором при частотном управлении
- •Глава 14. Математические модели силовых преобразователей в системе электропривода
- •14.1. Классификация силовых преобразователей в системах электропривода
- •14.2. Тиристорный преобразователь
- •14.3. Широтно-импульсный преобразователь (шип)
- •14.4. Частотно-импульсный преобразователь (чип)
- •14.5. Тиристорный регулятор напряжения
- •14.6. Преобразователь частоты (пч)
- •14.7. Характеристики сп
- •14.8. Виды математических моделей силовых преобразователей в форме структурной схемы
- •Глава 15. Математические модели аналоговых датчиков в системе электропривода
- •15.1. Классификация датчиков в системах электропривода и управления
- •15.2. Характеристики датчиков
- •15.3. Виды математических моделей датчиков в форме структурной схемы
- •Глава 16. Математические модели аналоговых регуляторов в системе электропривода
- •16.1. Классификация регуляторов в системах электропривода и управления
- •16.2. Структура регуляторов
- •16.3. Структура пид - регулятора
- •16.4. Структура пи - регулятора
- •16.5. Структура пд - регулятора
- •16.6. Структура п - регулятора
- •Глава 17. Математические модели цифровых регуляторов в системе электропривода
- •17.1. Математическая модель аналоговых регуляторов в системе электропривода
- •17.2. Дискретные сигналы
- •17.3. Уравнения пид - регулятора в дискретной форме
- •17.4. Рекуррентные уравнения пид – регулятора
- •17.5. Анализ дискретной модели пид - регулятора
- •17.6. Структурная схема алгоритма программной реализации цифрового пид - регулятора
- •Глава 18. Математические модели систем электропривода и методы их анализа
- •18.1. Общие представления о математических моделях систем электропривода
- •18.2. Пример математической модели системы электропривода
- •18.3. Классификация методов численного интегрирования дифференциальных уравнений математической модели системы электропривода
- •18.4. Численное интегрирование дифференциальных уравнений математической модели системы электропривода методом Эйлера
- •Уравнения (18) и (19) являются алгебраическими уравнениями, которые легко реализуются на любом языке программирования.
- •18.7. Алгоритм моделирования системы электропривода по методу структурных схем
- •Глава 19. Функциональный синтез систем электропривода
- •19.1 Общие сведения о синтезе системы электропривода
- •19.3. Функциональный синтез разомкнутой системы электропривода при управлении пуском
- •19.4. Функциональный синтез системы электропривода с отрицательной обратной связью
- •19.5. Функциональный синтез системы электропривода с подчиненным регулированием
- •19.6. Анализ результатов функционального синтеза системы электропривода
- •Глава 20. Программное обеспечение систем автоматизированного проектирования электроприводов
- •20.1. Программные характеристики сапр
- •21.1. Основное назначение ио сапр
- •21.2. Виды информации в сапр
- •Глава 22. Характеристика современных систем автоматизированного проектирования
- •22.1. Назначение ElectriCs Pro
- •22.2. Характеристика ElectriCs Pro
- •22.3. Последовательность проектирования в сапр cadElectro
- •Заключение
- •Библиографический список
- •1. Крячко в. П., Курейчик в.М., Норенков и.П. Теоретические основы сапр: Учеб. Для вузов.-м.:Энергоатомиздат,1987.
- •2. Норенков и. П., Манычев в. Б. Основы теории и проектирования сапр:Учеб. Для втузов.-м.:Высш. Шк.,1990.
- •3. Аветисян д.А. Автоматизация проектирования электрических систем. — м.: Высшая школа, 1998.
Глава 18. Математические модели систем электропривода и методы их анализа
18.1. Общие представления о математических моделях систем электропривода
Среди видов математического обеспечения САПР ЭП имеются математические модели элементов электропривода и математические модели систем электропривода.
Существуют следующие формы представления математических моделей:
1. форма уравнений состояния;
2. форма структурных схем;
3. форма передаточной функции.
При разработке математической модели системы электропривода в первую очередь рассматривается функциональная схема системы и математические модели элементов электропривода. Примерная функциональная схема системы электропривода приведена на рис. 1.
Рис. 1. Функциональная схема системы электропривода с регуляторами положения, скорости и тока
Математическая модель системы ЭП, записанная в первой форме, представляет систему алгебраических и дифференциальных уравнений. Провести анализ такой математической модели системы ЭП – это значит решить эту систему алгебраических и дифференциальных уравнений. Общим методом решения систем дифференциальных уравнений является метод интегрирования этих дифференциальных уравнений.
Различают следующие методы интегрирования систем дифференциальных уравнений.
1. Аналитические методы.
2. Графические методы.
3. Графо – аналитические методы.
4. Численные методы.
В настоящее время графические и графо – аналитические методы практически не применяются. Аналитические методы используются при выполнении исследований с целью проведения анализа и получения общих выводов при решении теоретических задач. Численные методы применяются при решении большинства прикладных задач.
На рис. 2 приведена структурная схема системы электропривода с регулятором скорости.
Рис. 2. Структурная схема системы электропривода с регулятором скорости
18.2. Пример математической модели системы электропривода
Для моделирования СЭП с применением структурной схемы (см. рис. 2.) используется структурный метод.
Различают реализацию структурного метода моделирования в стандартном варианте и нестандартном. Стандартный вариант предполагает использование современных программных пакетов, реализующих структурное моделирование. В нестандартном варианте используются классические традиционные программы по методу структурного моделирования, требующие подготовки рабочих подпрограмм, в которых обозначается связь между элементами структурной схемы. Оба варианта применимы к любым линейным и нелинейным системам управления.
Уравнения математической модели системы электропривода составляются на основе структурной схемы (см. рис. 2.).
Входное напряжение регулятора скорости (см. рис. 2) представляет собой ошибку регулирования и определяется как разность напряжений задания и датчика скорости.
. (1)
Выходной сигнал пропорционального регулятора скорости системы электропривода (СЭП) является напряжением управления силового преобразователя и вычисляется как произведение на коэффициент передачи регулятора.
. (2)
Силовой преобразователь (СП) на рис. 2 является безинерционным звеном и его выходное напряжение рассчитывается по выражению
. (3)
Уравнение для цепи якоря ЭД составлено по 2-му закону Кирхгофа.
. (4)
Уравнение состояния механической части СЭП запишем в форме равнения движения.
. (5)
Уравнения (4) и (5) преобразуем и после преобразования запишем в нормальной форме.
. (6)
. (7)
Для моделирования СЭП по уравнениям (1)-(3), (6) и (7) используется метод моделирования по уравнениям состояния.
Различают реализацию метода моделирования по уравнениям состояния в стандартном варианте и нестандартном. Стандартный вариант предполагает использование готовых программных пакетов, в которых реализуются современные методы численного интегрирования дифференциальных уравнений, и создаваемой пользователем рабочей подпрограммы, в которой запрограммированы уравнения СЭП, т.е. применительно к рис. 2. уравнения (1)-(3), (6) и (7) и нелинейная характеристика СП. В нестандартном варианте пользователь практически полностью программирует решение задачи моделирования СЭП по уравнениям состояния без обращения к рабочей подпрограмме. Оба варианта применимы к любым линейным и нелинейным системам управления.
Рис. 3. Характеристика управления СП, представленная по методу кусочно-линейной аппроксимации
Нелинейная характеристика управления СП имеет 2 участка.
Уравнение
первого участка
соответствует пределам изменения
напряжения управления от 0 до
.
На втором участке характеристики
управления СП напряжение
на выходе не изменяется, т.е.
при изменении
.
Для нелинейной характеристики управления СП, представленной на рис. 4, уравнение первого участка определяется функцией синуса (см. уравнение (8), а на втором участке напряжение на выходе СП остается постоянным .
, (8)
где
- фазовый коэффициент.
Рис. 4. Характеристика управления СП
