- •Издательство
- •Оглавление
- •Глава 1. Общие сведения о системах автоматизированного проектирования.………………….…..11
- •Глава 2. Алгоритм автоматизированного проектирования …….…………………………………………………….22
- •Глава 3. Состав системы автоматизированного проектирования …….……………………………………………..………29
- •Глава 4. Техническое обеспечение систем автоматизированного проектирования ……………………..39
- •Глава 5. Лингвистическое обеспечение систем автоматизированного проектирования ……………………..65
- •Глава 6. Математическое обеспечение систем автоматизированного проектирования ……………………..71
- •6.1. Виды математического обеспечения сапр эп……………………..71
- •Глава 7. Математические модели механической части систем электропривода ........................................................................72
- •Глава 8. Математические модели системы электропривода с двигателем постоянного тока независимого возбуждения………………………………………….83
- •Глава 14. Математические модели силовых преобразователей в системе электропривода ……………………………………………………………………………………157
- •Глава 15. Математические модели аналоговых датчиков в системе электропривода …………………………………………164
- •Глава 16. Математические модели аналоговых регуляторов в системе электропривода ……………………..167
- •Глава 17. Математические модели цифровых регуляторов в системе электропривода …………………….171
- •Глава 18. Математические модели систем электропривода и их методы анализа ………………………179
- •Глава 19. Функциональный синтез систем электропривода………………………………………………………….188
- •Глава 20. Программное обеспечение систем автоматизированного проектирования электроприводов ………………………………………………………..217
- •Глава 21. Информационное обеспечение систем автоматизированного проектирования электроприводов ……………………………………………………………………………………..229
- •Глава 22. Характеристика современных систем автоматизированного проектирования ……………………239
- •Введение
- •3.2. Состав сапр
- •4.3. Связь в вычислительных сетях
- •4.4. Классификация то сапр
- •4.6. Структура корпоративной сапр
- •4.10. Состав устройств арм
- •4.11. Эвм в арм сапр
- •5.2. Характеристика языков сапр
- •5.3. Языковые процессоры
- •Глава 6. Математическое обеспечение систем автоматизированного проектирования
- •6.2. Функциональная схема системы электропривода
- •Глава 7. Математические модели механической части систем электропривода
- •7.1. Понятие о механической части систем электропривода
- •7.2. Математическая модель одномассовой механической части сэп с постоянным моментом инерции
- •7.3. Математическая модель одномассовой механической части сэп с переменным моментом инерции
- •7.4. Математическая модель многомассовой механической части сэп
- •7.5. Математическая модель механической части системы взаимосвязанного электропривода
- •7.6. Математическая модель одномассовой механической части сэп с постоянным моментом инерции в форме уравнения состояния
- •7.7. Математическая модель одномассовой механической части сэп с постоянным моментом инерции в форме структурной схемы
- •7.8. Классификация моментов нагрузки
- •7.9. Математическая модель одномассовой механической части сэп с постоянным моментом инерции и с реактивным моментом нагрузки в форме структурной схемы
- •7.10. Примеры реализации математической модели механической части системы электропривода (мч сэп) в форме структурной схемы в формате программного пакета Matlab
- •Пример 4. Моделирование механической части системы электропривода (мч сэп) в форме структурной схемы в формате программного пакета Matlab
- •Глава 8. Математические модели системы электропривода с двигателем постоянного тока независимого возбуждения
- •8.1. Уравнения для двигателя постоянного тока независимого возбуждения
- •Итак, для дпт с нв имеются два уравнения:
- •8.2. Уравнения состояния для дпт с нв
- •8.4. Преобразование структурной схемы модели электропривода с дпт нв независимого возбуждения
- •Выполним третье преобразование полученной структурной схемы математической модели дпт с нв на рис. 4. Для этого воспользуемся правилами преобразования структурных схем, известных в тау (см. Рис.5).
- •8.6. Математическая модель электропривода с двигателем постоянного тока независимого возбуждения в форме передаточной функции
- •8.7. Примеры моделирования электропривода с двигателем постоянного тока независимого возбуждения
- •Глава 9. Математические модели системы электропривода с двигателем постоянного тока независимого возбуждения при двухзонном регулировании
- •9.1. Математическая модель дпт с нв при управлении по двум каналам Управление дпт с нв можно осуществлять изменением напряжения: в цепи якоря;
- •При изменении (уменьшении) напряжения уменьшается ток в обмотке возбуждения и величина магнитного потока .
- •9.2. Математическая модель дпт с нв при управлении по двум каналам в форме структурной схемы
- •9.3. Примеры моделирования электропривода с дпт с нв при управлении по двум каналам в форме структурной схемы
- •Глава 10. Математические модели системы электропривода с двигателем постоянного тока последовательного возбуждения
- •10.1. Математическая модель дпт с последовательным возбуждением (пв)
- •10.3. Примеры моделирования электропривода с дпт с пв в форме структурной схемы
- •Глава 11. Математическая модель асинхронного двигателя на основе схемы замещения
- •11.1. Общие сведения об асинхронном электроприводе
- •11.3. Принцип и режимы работы ад
- •Уравнения асинхронной машины при заторможенном роторе аналогичны уравнениям трансформатора.
- •- Приведенный ток ротора;
- •Глава 12. Математические модели системы электропривода с асинхронным двигателем без учета электромагнитной инерции
- •12.1. Подходы к разработке математической модели ад
- •12.3. Примеры моделирования электропривода с ад в форме структурной схемы
- •Глава 13. Математические модели системы электропривода с асинхронным двигателем с учетом электромагнитной инерции
- •13.3. Основы разработки математической модели ад (современный подход)
- •13.4. Уравнения для цепей статора и ротора ад с применением обобщенных векторов
- •13.5. Потокосцепления статора и ротора ад
- •13.6. Индуктивности и взаимные индуктивности обмоток статора и ротора ад
- •13.7. Обобщенные потокосцепления обмоток статора и ротора ад
- •13.8. Особенности, свойства и преобразования «обобщенного» вектора и уравнений с «обобщенным» вектором
- •13.9. Представление «обобщенного» вектора на комплексной плоскости
- •13.10. Преобразование «обобщенного» вектора на комплексной плоскости в разных системах координат
- •13.11. Преобразование «обобщенных» векторов потокосцеплений статора и ротора ад при записи в другой системе координат
- •13.12. Преобразование уравнений статора и ротора для записи в общей системе координат
- •13.13. Понятие об эдс вращения в векторных уравнениях ад
- •13.14. Уравнения статора и ротора ад в векторной форме
- •13.15. Обобщенная электрическая машина (оэм)
- •13.16. Электромагнитный момент ад
- •13.17. Подготовка уравнений модели короткозамкнутого ад при частотном управлении
- •13.19. Подготовка уравнений для построения модели ад с кз ротором при частотном управлении в форме структурной схемы
- •13.20. Модель ад с кз ротором при частотном управлении в форме структурной схемы
- •13.21. Классическая математическая модель ад с кз ротором при частотном управлении в форме уравнений состояния
- •13.22. Пример моделирования ад с кз ротором при частотном управлении
- •Глава 14. Математические модели силовых преобразователей в системе электропривода
- •14.1. Классификация силовых преобразователей в системах электропривода
- •14.2. Тиристорный преобразователь
- •14.3. Широтно-импульсный преобразователь (шип)
- •14.4. Частотно-импульсный преобразователь (чип)
- •14.5. Тиристорный регулятор напряжения
- •14.6. Преобразователь частоты (пч)
- •14.7. Характеристики сп
- •14.8. Виды математических моделей силовых преобразователей в форме структурной схемы
- •Глава 15. Математические модели аналоговых датчиков в системе электропривода
- •15.1. Классификация датчиков в системах электропривода и управления
- •15.2. Характеристики датчиков
- •15.3. Виды математических моделей датчиков в форме структурной схемы
- •Глава 16. Математические модели аналоговых регуляторов в системе электропривода
- •16.1. Классификация регуляторов в системах электропривода и управления
- •16.2. Структура регуляторов
- •16.3. Структура пид - регулятора
- •16.4. Структура пи - регулятора
- •16.5. Структура пд - регулятора
- •16.6. Структура п - регулятора
- •Глава 17. Математические модели цифровых регуляторов в системе электропривода
- •17.1. Математическая модель аналоговых регуляторов в системе электропривода
- •17.2. Дискретные сигналы
- •17.3. Уравнения пид - регулятора в дискретной форме
- •17.4. Рекуррентные уравнения пид – регулятора
- •17.5. Анализ дискретной модели пид - регулятора
- •17.6. Структурная схема алгоритма программной реализации цифрового пид - регулятора
- •Глава 18. Математические модели систем электропривода и методы их анализа
- •18.1. Общие представления о математических моделях систем электропривода
- •18.2. Пример математической модели системы электропривода
- •18.3. Классификация методов численного интегрирования дифференциальных уравнений математической модели системы электропривода
- •18.4. Численное интегрирование дифференциальных уравнений математической модели системы электропривода методом Эйлера
- •Уравнения (18) и (19) являются алгебраическими уравнениями, которые легко реализуются на любом языке программирования.
- •18.7. Алгоритм моделирования системы электропривода по методу структурных схем
- •Глава 19. Функциональный синтез систем электропривода
- •19.1 Общие сведения о синтезе системы электропривода
- •19.3. Функциональный синтез разомкнутой системы электропривода при управлении пуском
- •19.4. Функциональный синтез системы электропривода с отрицательной обратной связью
- •19.5. Функциональный синтез системы электропривода с подчиненным регулированием
- •19.6. Анализ результатов функционального синтеза системы электропривода
- •Глава 20. Программное обеспечение систем автоматизированного проектирования электроприводов
- •20.1. Программные характеристики сапр
- •21.1. Основное назначение ио сапр
- •21.2. Виды информации в сапр
- •Глава 22. Характеристика современных систем автоматизированного проектирования
- •22.1. Назначение ElectriCs Pro
- •22.2. Характеристика ElectriCs Pro
- •22.3. Последовательность проектирования в сапр cadElectro
- •Заключение
- •Библиографический список
- •1. Крячко в. П., Курейчик в.М., Норенков и.П. Теоретические основы сапр: Учеб. Для вузов.-м.:Энергоатомиздат,1987.
- •2. Норенков и. П., Манычев в. Б. Основы теории и проектирования сапр:Учеб. Для втузов.-м.:Высш. Шк.,1990.
- •3. Аветисян д.А. Автоматизация проектирования электрических систем. — м.: Высшая школа, 1998.
13.16. Электромагнитный момент ад
Основной конечной величиной характеризующей электромеханическое преобразование энергии является электромагнитный момент на валу. Он образуется в результате взаимодействия магнитного поля и тока, протекающего в обмотках статора или ротора, и может быть представлен как векторное произведение.
, (113)
где – число пар полюсов машины.
Можно также представить его в другом виде.
. (114)
В
выражениях для электромагнитного момент
на валу физический смысл имеет только
модуль вектора электромагнитного
момента и его можно определить через
проекции векторов сомножителей. Для
произвольных векторов «
»
и «
»
модуль векторного произведения равен
разности скалярных произведений проекций
векторов на ортогональные оси координат,
т.е. –
. (115)
;
.
. (116)
Учтем выражение (116) и поэтому любое из выражений для электромагнитного момент на валу позволяет найти модуль электромагнитного момента |М|=М, выразив входящие в него векторы через их проекции на координатные оси « ». Например, электромагнитный момент определяется через произведение потокосцепления ротора на ток ротора в виде
.
. (117)
Выбор уравнения для расчета электромагнитного момента АД играет большую роль, т.к. некоторые величины АД (в особенности у АД с к.з. ротором) не могут быть измерены. Кроме этого, выбор уравнения для расчета электромагнитного момента АД существенно влияет на сложность математической модели АД, увеличивая порядок системы уравнений модели.
13.17. Подготовка уравнений модели короткозамкнутого ад при частотном управлении
Асинхронный
привод с частотным управлением является
в настоящее время наиболее распространенным.
Однако его динамика чаще всего исследуется
с помощью упрощенных моделей с отклонениями
в малом. Векторная модель АД позволяет
получить точную структурную схему,
которую затем можно исследовать
современными средствами компьютерного
моделирования. Рассмотрим на этом
примере методику получения передаточных
функций сложных объектов с помощью
векторных уравнений ОЭМ. Пусть система
координат модели АД ориентирована по
вектору напряжения статора с частотой
питания
,
т.е. вращается с угловой скоростью,
равной
.
Тогда
угловая частота вращения системы
координат модели АД
в уравнениях (118)
и (119) будет
определяться частотой сети
,
т.е.
.
Система координат « », вращающаяся синхронно с потокосцеплением ротора ( при одной паре полюсов) и ориентированная по его направлению, наиболее пригодна для описания процессов в АД.
. (118)
. (119)
Из
выражений с учетом того, что
,
а следовательно
получим для
системы
координат «
»,
вращающейся синхронно с потокосцеплением
ротора (
)
и ориентированной по его направлению.
. (120)
. (121)
Представим обобщенные вектора тока, напряжения и потокосцепления в уравнениях (120) и (121) комплексными векторами, записанными в алгебраической форме в системе координат « ».
. (122)
. (123)
Раскрывая скобки, преобразуя алгебраические выражения и приравнивая действительные и мнимые части в правой и левой частях выражений (122) и (123) получим четыре уравнения для цепей статора и ротора.
. (124)
. (125)
. (126)
. (127)
Для
вычисления модуля электромагнитного
момента АД «
»
используются векторы потокосцепления
статора
и тока ротора
.
Подставим в выражение для электромагнитного момента АД выражение для тока статора .
Выражение
для
тока
статора
получено из выражения:
. (128)
, (129)
где
. (129а)
Для записи уравнений модели АД применим обобщенные векторы и в системе координат « ». Сначала рассмотрим уравнение для статора.
. (130)
Подставим
выражение (129)
в уравнение (130)
и применим операторную форму записи,
заменив символы
на символы
.
Получим
.
После преобразования получим в операторной форме уравнение для статора.
. (131)
, (132)
– электромагнитная
постоянная времени статора.
Получив уравнение для статора (132), рассмотрим уравнение для ротора.
. (133)
. (134)
Преобразуем выражение (133) и применим операторную форму записи, заменив символы на символы . После преобразования получим
. (135)
Преобразуем выражение (134). После преобразования получим
. (136)
Подставим в уравнение (135) из выражения (136). Получим
. (137)
Преобразуем выражение (137). После преобразования получим
. (138)
Разделим правую и левую части выражения (138) на . После преобразования получим в операторную форме уравнение для ротора.
, (139)
где
; (140)
-
коэффициент рассеяния.
. (141)
В результате проведенных преобразований вместо четырех уравнений с четырьмя неизвестными обобщенными векторами получили два уравнения (139) и (141) с двумя неизвестными и , с помощью которых можно вычислить модуль электромагнитного момента АД « ».
. (142)
Вычитая из уравнения (141) уравнение (139), можно понизить порядок системы уравнений модели АД. В результате проведенных преобразований получим
, (143)
где
- расчетный параметр;
-
расчетная постоянная времени.
