- •Издательство
- •Оглавление
- •Глава 1. Общие сведения о системах автоматизированного проектирования.………………….…..11
- •Глава 2. Алгоритм автоматизированного проектирования …….…………………………………………………….22
- •Глава 3. Состав системы автоматизированного проектирования …….……………………………………………..………29
- •Глава 4. Техническое обеспечение систем автоматизированного проектирования ……………………..39
- •Глава 5. Лингвистическое обеспечение систем автоматизированного проектирования ……………………..65
- •Глава 6. Математическое обеспечение систем автоматизированного проектирования ……………………..71
- •6.1. Виды математического обеспечения сапр эп……………………..71
- •Глава 7. Математические модели механической части систем электропривода ........................................................................72
- •Глава 8. Математические модели системы электропривода с двигателем постоянного тока независимого возбуждения………………………………………….83
- •Глава 14. Математические модели силовых преобразователей в системе электропривода ……………………………………………………………………………………157
- •Глава 15. Математические модели аналоговых датчиков в системе электропривода …………………………………………164
- •Глава 16. Математические модели аналоговых регуляторов в системе электропривода ……………………..167
- •Глава 17. Математические модели цифровых регуляторов в системе электропривода …………………….171
- •Глава 18. Математические модели систем электропривода и их методы анализа ………………………179
- •Глава 19. Функциональный синтез систем электропривода………………………………………………………….188
- •Глава 20. Программное обеспечение систем автоматизированного проектирования электроприводов ………………………………………………………..217
- •Глава 21. Информационное обеспечение систем автоматизированного проектирования электроприводов ……………………………………………………………………………………..229
- •Глава 22. Характеристика современных систем автоматизированного проектирования ……………………239
- •Введение
- •3.2. Состав сапр
- •4.3. Связь в вычислительных сетях
- •4.4. Классификация то сапр
- •4.6. Структура корпоративной сапр
- •4.10. Состав устройств арм
- •4.11. Эвм в арм сапр
- •5.2. Характеристика языков сапр
- •5.3. Языковые процессоры
- •Глава 6. Математическое обеспечение систем автоматизированного проектирования
- •6.2. Функциональная схема системы электропривода
- •Глава 7. Математические модели механической части систем электропривода
- •7.1. Понятие о механической части систем электропривода
- •7.2. Математическая модель одномассовой механической части сэп с постоянным моментом инерции
- •7.3. Математическая модель одномассовой механической части сэп с переменным моментом инерции
- •7.4. Математическая модель многомассовой механической части сэп
- •7.5. Математическая модель механической части системы взаимосвязанного электропривода
- •7.6. Математическая модель одномассовой механической части сэп с постоянным моментом инерции в форме уравнения состояния
- •7.7. Математическая модель одномассовой механической части сэп с постоянным моментом инерции в форме структурной схемы
- •7.8. Классификация моментов нагрузки
- •7.9. Математическая модель одномассовой механической части сэп с постоянным моментом инерции и с реактивным моментом нагрузки в форме структурной схемы
- •7.10. Примеры реализации математической модели механической части системы электропривода (мч сэп) в форме структурной схемы в формате программного пакета Matlab
- •Пример 4. Моделирование механической части системы электропривода (мч сэп) в форме структурной схемы в формате программного пакета Matlab
- •Глава 8. Математические модели системы электропривода с двигателем постоянного тока независимого возбуждения
- •8.1. Уравнения для двигателя постоянного тока независимого возбуждения
- •Итак, для дпт с нв имеются два уравнения:
- •8.2. Уравнения состояния для дпт с нв
- •8.4. Преобразование структурной схемы модели электропривода с дпт нв независимого возбуждения
- •Выполним третье преобразование полученной структурной схемы математической модели дпт с нв на рис. 4. Для этого воспользуемся правилами преобразования структурных схем, известных в тау (см. Рис.5).
- •8.6. Математическая модель электропривода с двигателем постоянного тока независимого возбуждения в форме передаточной функции
- •8.7. Примеры моделирования электропривода с двигателем постоянного тока независимого возбуждения
- •Глава 9. Математические модели системы электропривода с двигателем постоянного тока независимого возбуждения при двухзонном регулировании
- •9.1. Математическая модель дпт с нв при управлении по двум каналам Управление дпт с нв можно осуществлять изменением напряжения: в цепи якоря;
- •При изменении (уменьшении) напряжения уменьшается ток в обмотке возбуждения и величина магнитного потока .
- •9.2. Математическая модель дпт с нв при управлении по двум каналам в форме структурной схемы
- •9.3. Примеры моделирования электропривода с дпт с нв при управлении по двум каналам в форме структурной схемы
- •Глава 10. Математические модели системы электропривода с двигателем постоянного тока последовательного возбуждения
- •10.1. Математическая модель дпт с последовательным возбуждением (пв)
- •10.3. Примеры моделирования электропривода с дпт с пв в форме структурной схемы
- •Глава 11. Математическая модель асинхронного двигателя на основе схемы замещения
- •11.1. Общие сведения об асинхронном электроприводе
- •11.3. Принцип и режимы работы ад
- •Уравнения асинхронной машины при заторможенном роторе аналогичны уравнениям трансформатора.
- •- Приведенный ток ротора;
- •Глава 12. Математические модели системы электропривода с асинхронным двигателем без учета электромагнитной инерции
- •12.1. Подходы к разработке математической модели ад
- •12.3. Примеры моделирования электропривода с ад в форме структурной схемы
- •Глава 13. Математические модели системы электропривода с асинхронным двигателем с учетом электромагнитной инерции
- •13.3. Основы разработки математической модели ад (современный подход)
- •13.4. Уравнения для цепей статора и ротора ад с применением обобщенных векторов
- •13.5. Потокосцепления статора и ротора ад
- •13.6. Индуктивности и взаимные индуктивности обмоток статора и ротора ад
- •13.7. Обобщенные потокосцепления обмоток статора и ротора ад
- •13.8. Особенности, свойства и преобразования «обобщенного» вектора и уравнений с «обобщенным» вектором
- •13.9. Представление «обобщенного» вектора на комплексной плоскости
- •13.10. Преобразование «обобщенного» вектора на комплексной плоскости в разных системах координат
- •13.11. Преобразование «обобщенных» векторов потокосцеплений статора и ротора ад при записи в другой системе координат
- •13.12. Преобразование уравнений статора и ротора для записи в общей системе координат
- •13.13. Понятие об эдс вращения в векторных уравнениях ад
- •13.14. Уравнения статора и ротора ад в векторной форме
- •13.15. Обобщенная электрическая машина (оэм)
- •13.16. Электромагнитный момент ад
- •13.17. Подготовка уравнений модели короткозамкнутого ад при частотном управлении
- •13.19. Подготовка уравнений для построения модели ад с кз ротором при частотном управлении в форме структурной схемы
- •13.20. Модель ад с кз ротором при частотном управлении в форме структурной схемы
- •13.21. Классическая математическая модель ад с кз ротором при частотном управлении в форме уравнений состояния
- •13.22. Пример моделирования ад с кз ротором при частотном управлении
- •Глава 14. Математические модели силовых преобразователей в системе электропривода
- •14.1. Классификация силовых преобразователей в системах электропривода
- •14.2. Тиристорный преобразователь
- •14.3. Широтно-импульсный преобразователь (шип)
- •14.4. Частотно-импульсный преобразователь (чип)
- •14.5. Тиристорный регулятор напряжения
- •14.6. Преобразователь частоты (пч)
- •14.7. Характеристики сп
- •14.8. Виды математических моделей силовых преобразователей в форме структурной схемы
- •Глава 15. Математические модели аналоговых датчиков в системе электропривода
- •15.1. Классификация датчиков в системах электропривода и управления
- •15.2. Характеристики датчиков
- •15.3. Виды математических моделей датчиков в форме структурной схемы
- •Глава 16. Математические модели аналоговых регуляторов в системе электропривода
- •16.1. Классификация регуляторов в системах электропривода и управления
- •16.2. Структура регуляторов
- •16.3. Структура пид - регулятора
- •16.4. Структура пи - регулятора
- •16.5. Структура пд - регулятора
- •16.6. Структура п - регулятора
- •Глава 17. Математические модели цифровых регуляторов в системе электропривода
- •17.1. Математическая модель аналоговых регуляторов в системе электропривода
- •17.2. Дискретные сигналы
- •17.3. Уравнения пид - регулятора в дискретной форме
- •17.4. Рекуррентные уравнения пид – регулятора
- •17.5. Анализ дискретной модели пид - регулятора
- •17.6. Структурная схема алгоритма программной реализации цифрового пид - регулятора
- •Глава 18. Математические модели систем электропривода и методы их анализа
- •18.1. Общие представления о математических моделях систем электропривода
- •18.2. Пример математической модели системы электропривода
- •18.3. Классификация методов численного интегрирования дифференциальных уравнений математической модели системы электропривода
- •18.4. Численное интегрирование дифференциальных уравнений математической модели системы электропривода методом Эйлера
- •Уравнения (18) и (19) являются алгебраическими уравнениями, которые легко реализуются на любом языке программирования.
- •18.7. Алгоритм моделирования системы электропривода по методу структурных схем
- •Глава 19. Функциональный синтез систем электропривода
- •19.1 Общие сведения о синтезе системы электропривода
- •19.3. Функциональный синтез разомкнутой системы электропривода при управлении пуском
- •19.4. Функциональный синтез системы электропривода с отрицательной обратной связью
- •19.5. Функциональный синтез системы электропривода с подчиненным регулированием
- •19.6. Анализ результатов функционального синтеза системы электропривода
- •Глава 20. Программное обеспечение систем автоматизированного проектирования электроприводов
- •20.1. Программные характеристики сапр
- •21.1. Основное назначение ио сапр
- •21.2. Виды информации в сапр
- •Глава 22. Характеристика современных систем автоматизированного проектирования
- •22.1. Назначение ElectriCs Pro
- •22.2. Характеристика ElectriCs Pro
- •22.3. Последовательность проектирования в сапр cadElectro
- •Заключение
- •Библиографический список
- •1. Крячко в. П., Курейчик в.М., Норенков и.П. Теоретические основы сапр: Учеб. Для вузов.-м.:Энергоатомиздат,1987.
- •2. Норенков и. П., Манычев в. Б. Основы теории и проектирования сапр:Учеб. Для втузов.-м.:Высш. Шк.,1990.
- •3. Аветисян д.А. Автоматизация проектирования электрических систем. — м.: Высшая школа, 1998.
9.3. Примеры моделирования электропривода с дпт с нв при управлении по двум каналам в форме структурной схемы
Пример 1. Rя=0.05; Тя=0.05 с; J=10; U=220 B; С=2; Mc=200 Нм.
Пример 2. Rя=0.05; Тя=0.1 с; J=10; U=220 B; Mc=200 Нм.
Пример 3. Rя=0.05; Тя=0.1 с; J=10; U=220 B; Mc=200 Нм.
Пример 4. Rя=0.05; Тя=0.05 с; J=10; U=220 B; С=2; Mc=200 Нм.
Глава 10. Математические модели системы электропривода с двигателем постоянного тока последовательного возбуждения
10.1. Математическая модель дпт с последовательным возбуждением (пв)
Управление ДПТ с ПВ можно осуществлять изменением напряжения в цепи якоря.
Рис. 1. Принципиальная схема ДПТ с ПВ
Уравнение для цепи якоря ДПТ с ПВ составляется на основании 2 закона Кирхгофа.
,
где
- эдс двигателя;
-
полное сопротивление цепи якоря;
-
суммарная индуктивность цепи якоря.
Подставим выражение для эдс двигателя в уравнение для цепи якоря ДПТ с ПВ. Получим
. (1)
Дополним математическое описание работы ДПТ с ПВ основным уравнением движения электропривода.
. (2)
. (3)
Подставим (3) во (2). Получим
. (4)
Приведем уравнения (1) и (4) к «нормальному виду» и запишем их в форме Коши (в форме уравнений состояния).
. (5)
. (6)
Получили математическую модель ДПТ с ПВ в форме уравнений состояния.
10.2. Математическая модель ДПТ с ПВ в форме структурной схемы
Составим на основе полученной математической модели ДПТ с ПВ в форме уравнений состояния (5) и (6) математическую модель ДПТ с ПВ в форме структурной схемы.
Рис. 2. Математическая модель ДПТ с ПВ в форме структурной схемы
Преобразуем структурную схему модели ДПТ с ПВ. Для этого воспользуемся правилами преобразования структурных схем, известных в ТАУ.
Рис. 3. Математическая модель ДПТ с ПВ после преобразования
10.3. Примеры моделирования электропривода с дпт с пв в форме структурной схемы
Пример 1. Rя=0.05; Тя=0.1 с; J=10; U=220 B; Mc=200 Нм.
Пример 2. Rя=0.05; Тя=0.1 с; J=10; U=220 B; Mc=200 Нм.
Пример 3. Rя=0.05; Тя=0.1 с; J=10; U=220 B; Mc=200 Нм.
Глава 11. Математическая модель асинхронного двигателя на основе схемы замещения
11.1. Общие сведения об асинхронном электроприводе
Управление скоростью асинхронного двигателя (АД) можно осуществлять несколькими способами (три и более способов). Основным способом в настоящее время является метод регулирования скорости изменением частоты (и напряжения) питания статора.
Рис. 1. Схема АД с короткозамкнутым ротором
Асинхронный электропривод имеет ряд преимуществ по сравнению с ЭП других типов.
Фазные напряжения, поступающие на обмотки статора, представляют собой симметричную трехфазную систему напряжений.
;
;
.
Соотношения для АД необходимы для анализа паспортных данных двигателя.
Синхронная
скорость вращения вала АД в об/мин -
.
;
.
где
- число пар полюсов АД;
-
частота напряжения статора в Гц;
-
скорость вращения вала АД в об/мин;
-
скольжение вала АД.
Угловая
скорость вращения вала АД в рад/сек –
.
Синхронная угловая скорость вращения
вала АД в рад/сек –
.
;
.
Момент АД – в Н*м;
Критическое
скольжение вала АД –
.
-
уравнение механической характеристики
АД.
В
екторная
диаграмма напряжений питания обмоток
статора АД представляет собой симметричную
трехлучевую звезду. Пусть
начальная фаза напряжения в фазе А равна
нулю.
Рис. 2. Векторная диаграмма напряжений статора АД с короткозамкнутым ротором
Рис. 3. Векторная диаграмма токов статора АД с короткозамкнутым ротором
Ток
в фазе А статора –
.
Ток
в фазе В статора –
.
Ток
в фазе С статора –
.
11.2. Конструкция АД
АД имеет статор и ротор, разделенные воздушным зазором. С целью снижения тока холостого хода (намагничивания) воздушный зазор выполняется минимально возможным. Активными частями АД являются магнитопровод и обмотки. Магнитопровод состоит из сердечников статора и ротора. Магнитопровод выполняется шихтованным - из листов электротехнической стали.
Рис. 4. Конструкция АД
В машинах малой мощности обычно применяют сталь марки 2013 с низким содержанием кремния, достаточно вязкую, позволяющую получать мелкие пазы сложной конфигурации. В АД средней и большой мощности используют сталь марок 2212, 2311 и 2411 с повышенным содержанием кремния. Эти стали более хрупки, что затрудняет их штамповку, но имеют низкие потери на перемагничивание и не требуют отжига сердечников статора и ротора после штамповки.
Обмотка статора, обычно трехфазная, располагается в пазах сердечника статора. Может выполняться однослойной (петлевой, концентрической, шаблонной), одно-двухслойной, двухслойной (петлевой). Фазы обмотки статора АХ, ВУ, СZ соединяют по схеме звезда или треугольник. Короткозамкнутая обмотка располагается в пазах сердечника ротора. Выполняется в виде беличьей клетки. «Беличья клетка» состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. В двигателях малой и средней мощности «беличью клетку» обычно получают путем заливки расплавленного алюминия. В двигателях большой мощности «беличью клетку» выполняют из медных стержней, концы которой вваривают в короткозамыкающие кольца. В электрическом отношении «беличья клетка» представляет собой многофазную обмотку, соединенную по схеме звезда и замкнутую накоротко.
