Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
26.38 Mб
Скачать

Цифровое растрирование

Под цифровым растрированием понимают алгоритмический процесс воспроизведения полутонового изображения малыми бинарными точечными элементами. Как следствие, такие современные технологии, как «Компьютер – фотоформа», «Компьютер – печатная форма» и «Компьютер – печать», действительно, не имеют ограничений, связанных с использованием разнообразных растровых структур. В цифровом растрировании растровые точки состоят из от одельных малых элементов (элементы изображения – «пикселы»). Рис. 4.36 поясняет цифровое представление растровых точек. Чем выше разрешающая способность выводного устройства (фотовыводное устройство «Компьютер – фотоформа», оборудование для технологии «Компьютер – печатная форма» или для системы «Компьютер – печать»), тем точнее можно воспроизвести форму растровой точки.

Только с развитием цифровых технологий обработки изображений появилась возможность широкого использования ЧМ-растрирования. Наименьший элемент, который позволяет сгенерировать и позиционировать выводное устройство, может служить, например, точкой для ЧМ-растрирования. Значение тона в этом случае формируется расстоянием между точками в пределах растровой ячейки (рис. 4.37). Согласно алгоритму ЧМ (стохастического) -растрирования, отдельные точки в различном их количестве и различными способами объединяются в группы (кластеры).

На рис. 4.38 приводится другой пример сравнения АМ- и ЧМ-растрирования. На обоих рисунках растровые точки строятся цифровым методом и состоят из отдельных элементов при одном и том же разрешении.

В фотомеханическом растрировании количество градаций серого, приходящееся на растровую ячейку, зависит от воспроизводимости изменений размеров растровых точек. Для структуры с линиатурой 60 лин/см можно предположить, что имеется приблизительно от 70 до 100 различных размеров/площадей (это означает, что диаметр точек изменяется с шагом, примерно, от 1 до 2 мкм).

Рисунок 4.36 - Структура «цифровых» растровых точек:

а моделирование аналоговой растровой точки из пикселей цифровым способом с различным разрешением

в записи в (dpi));

б передача градаций

Рисунок 4.35 - Модуляция оптической плотности посредством изменения толщины красочного слоя

Когда растровая точка составляется из отдельных пикселей, количество уровней градации определяется размером растровой ячейки, внутри которой воспроизводятся уровни градации оригинала (при линиатуре растра L в линиях на сантиметр или линий на дюйм), а также разрешением А (в dpi, т.е. точках на дюйм), с которым можно позиционировать отдельные элементы.

Согласно рис. 4.39, количество элементов N на растровую ячейку (уровней серого) определяется линиатурой растра L и адресностью А. N=(А/L)2 (например, N=64 для L=150 dpi и А=1200 dpi). Поскольку растровая ячейка может содержать максимально N пикселей, а также с учетом значения тона «пробела» (незапечатанной ячейки), можно считать, что всего в диапазоне от 0 до 100% возможно сформировать N + 1 уровень градации (т.е. при N = 64 интервал оптических плотностей составляет 1,56). При этом предполагается, что отдельные элементы растровой ячейки полностью пропечатываются и имеют только два состояния – запечатанное и незапечатанное, т.е. черное или белое.

Пример, в котором отдельные растровые точки можно передавать разной оптической плотностью (рис. 4.35), в частности не двумя, а пятью ее уровнями (g = 5), показан на рис. 4.39. Таким образом, значительно увеличивается число градаций, передаваемых элементарной растровой площадкой. Растрирование с линиатурой 150 lpi (линий на дюйм) и разрешением вывода 1200 dpi при бинарной записи (g=2) обеспечивает передачу 65 градаций (g=65). Однако, в случае записи каждого элемента пятью уровнями градаций (g=5), общее число, приходящееся на растровую ячейку, становится равным 257, что зна-

чительно улучшает воспроизведение тонового диапазона. Если в структуре изображения нет слишком мелких деталей, то возможно выполнять обработку изображения при меньших разрешениях. При работе с пятью уровнями (g = 5) возможно при разрешении лишь 600 dpi получить такое же число уровней градации на растровую ячейку (64), как и при разрешении 1200 dpi и использовании только двух уровней (g = 2) на элемент.

Рисунок 4.37 - Цифровое растрирование:

а 12,5% – растровая величина при АМ- и ЧМ- растрировании (разрешение 1200 dpi);

б 25% – растровая величина при различных алгоритмах для ЧМ-растрирования (указаны производители и наименования продукции, а также диаметр отдельной точки) (IFRA)

В процедуре доминирующего в полиграфии языка описания страниц PostScript для амплитудно-модулированного растрирования указываются три рассмотренных выше параметра: линиатура, поворот растровой структуры и форма растровой точки. Форма растровой точки описывается «функцией точки» и исходно принимается круглой.

Теоретически при частотно-модулированном растрировании площадь изображения не разделяется на элементарные растровые площадки. Из практическихже соображений при ЧМ-растрировании элементарные площадки часто определяются в самой компьютерной системе, при этом распределение отдельных точек в отдельных ячейках является случайным.

Рисунок 4.38 - Сравнение амплитудно-модулированного растрирования (АМ) с частотно-модулированным (ЧМ) (AccuTone, R. R. Donnelley)

Рисунок 4.39 - Связь между линиатурой, адресностью и числом градаций при цифровом растрировании и построении изображения

Чтобы избежать сложного математического анализа окрестных значений градации и, таким образом, сократить затраты машинного времени, формируют элементарные отдельные растровые площадки со случайным распределением точек. Однако периодичность обуславливает опасность возникновения муаровой картины.

Важнейшей качественной особенностью способа ЧМ-растрирования, возможно, является наличие в растровом изображении более естественных, плавных градационных переходов. При случайном расположении элементов отдельных точек не возникают нежелательные скопления точек (конгломераты), которые могут восприниматься глазом наблюдателя как помехи. Действительно, отдельные элементарные точки при нормальном расстоянии рассматривания являются достаточно мелкими и для большинства наблюдателей невидимыми. И наоборот, отдельные конгломераты точек в большинстве случаев немедленно детектируются глазом и выглядят как ложные узоры.

В век цифровых экспонирующих устройств АМ-растрирование с формированием точек больших размеров из маленьких отдельных элементов можно рассматривать как реликт из мира аналоговой фотографической репродукционной технологии. Именно ЧМ-растрирование следует рассматривать как идеальный способ современной цифровой репродукционной технологии. Однако на практике еще пока преобладает АМ-структура изображения. Это позволяет, например, при копировании печатных форм работать с растровыми точками максимально возможных размеров и вести формный процесс со значительно большими допусками. Из-за малых размеров растровых точек ЧМ-структура более чувствительна к влиянию помех. ЧМ-структура изображения обычно приводит к улучшению плавности передачи полутонов, однако из-за использования отдельных точек уменьшенных размеров эти изменения могут оказывать отрицательное влияние на стабильность кривых градационной передачи. Преимущество ЧМ-растрирования заключается в том, что колебания приводки красок, в особенности на равномерных многокрасочных участках, предотвращают цветовые отклонения или делают их пренебрежимо малыми.