Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций.doc
Скачиваний:
4
Добавлен:
01.07.2025
Размер:
1.95 Mб
Скачать

Двойственная задача

где, bi - запас i-го ресурса; yi - стоимость единицы i-го ресурса; min - общая стоимость всех ресурсов.

аi - затраты i-го ресурса на производство продукции j-го вида; yj - стоимость единицы i-го ресурса; Cj - прибыль от продукции j-го вида;

-цена всех ресурсов, идущих на изготовление продукции j-го вида.

Двойственная задача: Какова должна быть стоимость единицы каждого из ресурсов yj i = 1,m , чтобы при заданных количествах ресурсов bi и заданных величинах дохода Cj от производства каждого вида продукции минимизировать общую стоимость ресурсов?

Переменные yj называются учетными, неявными, фиктивными, теневыми ценами.

Пара взаимодвойственных задач, в которых все ограничения записываются в виде неравенств, причем при максимизации знаки всех неравенств , а при минимизации , называется симметричной. Приведенная выше пара задач симметрична.

В теории двойственности важное значение имеют две теоремы, определяющие связь между решениями прямой и двойственной задач.

Теорема двойственности. Если из пары двойственных задач одна имеет оптимальный план, то и вторая тоже имеет оптимальный план, причем оптимальные значения целевых функций обеих задач равны между собой:

.

При этом . Отсюда следует, что двойственная переменная yi является коэффициентом при bi и, следовательно, показывает, как изменится целевая функция при изменении i- го ресурса на единицу. В литературе двойственные переменные часто называют двойственными оценками.

Теорема равновесия. План прямой задачи и план соответствующей двойственной задачи являются оптимальными при выполнении следующих условий:

- если при подстановке компонент оптимального плана в систему ограничений исходной задачи i-е ограничение обращается в неравенство, то i-я компонента оптимального плана двойственной задачи равна нулю.

- если i-я компонента оптимального плана двойственной задачи положительна, то i-е ограничение исходной задачи удовлетворяется ее оптимальным решением как строгое равенство.

Таким образом, в парах соотношений

из знака строгого неравенства во одном соотношении каждой пары следует знак строгого равенства в другом.

Условия теоремы равновесия часто записывают в виде

и называют условиями дополняющей нежесткости.

Из рассмотренных теорем можно сделать следующие выводы:

А) Всякий раз, когда i-е ограничение прямой задачи обращается в строгое неравенство, i-я компонента решения двойственной задачи обращается в 0.

Аналогично, всякий раз, когда i-е ограничение двойственной задачи выполняется как строгое неравенство, j-ая компонента оптимального плана обращается в ноль.

Б) Обратно, если i-я компонента оптимального плана двойственной задачи положительна, i-е ограничение исходной задачи выполняется как строгое равенство. Верно и для двойственной задачи.

Отсюда следует:

а) Если двойственная оценка yi* = 0, то сырье i-го вида не полностью используется при производстве продукции.

б) Если j-е ограничение двойственной задачи выполняется как строгое неравенство, то j-ый вид продукции выпускать экономически нецелесообразно, хj =0 (т.е. в двойственной задаче цена всех ресурсов больше прибыли)

в) Если yi  0, то сырье i-го типа полностью используется при производстве.

Значения двойственных оценок можно определить по симплексной таблице решения прямой задачи следующим образом: -( ), где j-номера столбцов единичных векторов из исходной симплекс-таблицы (на начальной итерации); -окончательные оценки из последней симплекс-таблицы, соответствующие этим векторам. При этом индексы двойственных оценок определяются номером ограничения, которому они соответствуют.

Необходимо заметить, что если в качестве канонической формы рассматривается задача максимизации, то сумма берется без знака “-“.