Исторические сведения
Большинство математических понятий прошли долгий путь развития. Сложный путь прошло понятие функции. Оно уходит корнями в ту далекую эпоху, когда люди впервые поняли, что окружающие их явления взаимосвязаны. Они еще не умели считать, но уже знали, что чем больше оленей удастся убить на охоте, тем дольше племя будет избавлено от голода; чем сильнее натянута тетива лука, тем дальше полетит стрела; чем дольше горит костер, тем теплее будет в пещере. С развитием скотоводства, земледелия, ремесел и обмена увеличивалось количество известных людям зависимостей между величинами.
Идея зависимости некоторых величин восходит к древнегреческой науке.Но греки рассматривали лишь вопросы, имеющие “геометрическую” природу, и не ставили вопроса об общем изучении различных зависимостей. Графическое изображение зависимостей широко использовали Г.Галилей (1564–1642), П.Ферма (1601–1665) и Р.Декарт (1569–1650), который ввел понятие «переменной величины». По определению Декарта: «Функцией переменной величины называется количество, образованное каким угодно способом из этой переменной величины и постоянных».
Развитие механики и техники потребовало введения общего понятия функции, что было сделано немецким философом и математиком Г.Лейбницем. Следующий шаг в развитии понятия функции сделал ученик Бернулли, член Петербургской Академии наук Леонард Эйлер (1707 – 1783). Он писал: “Величины, зависящие от других так, что с изменениями вторых изменяются и первые, принято называть их функциями”.В общем виде понятие обобщенной функции было введено французом Лораном Шварцем. В 1936 году, 28-летний советский математик и механик С. Л. Соболев первым рассмотрел частный случай обобщенной функции. Итак, знание законов природы дало человеку возможность объяснять и предсказывать ее разнообразнейшие явления.
Определение функции
Функция - одно из основных математических и общенаучных понятий,выражающее зависимость одних переменных величин от других. Оно сыграло и поныне играет большую роль в познании реального мира.
Определение. Числовой функцией с областью определения D называется соответствие, при котором каждому числу x из множества D сопоставляется по некоторому правилу единственное число y, зависящее от x. Принято называтьx независимой переменной или аргументом, а у — зависимой переменной или значением функции.
Записывают указанное соотношение между x и у в общем виде так: у = f (x) или у = F (x) и т. п.
График функции y = f (х) - это множество всех точек плоскости, координаты (х, у) которых удовлетворяют соотношению y = f(x).
Способы задания функции:
аналитический (с помощью формулы);
графический;
табличный;
словесный.
Функции, изучаемые в школе:
линейнаяy = ax + b;
квадратичнаяy = ax2 + bx + c;
обратная пропорциональность
;корень n- степени
;модульy = | x |;
тригонометрическиеy = sinx, y = cosx, y = tgx, y = ctgx;
показательная
;логарифмическая
.
