Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 2 из диска 1С Информатика (звук и графика).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.57 Mб
Скачать

2.12.6. Импульсно-кодовая модуляция

Импульсно-кодовая модуляция (англ. Pulse Code Modulation, PCM) заключается в том, что звуковая информация хранится в виде значений амплитуды, взятых в определенные моменты времени ( измерения проводятся «импульсами»).

Процесс получения цифровой формы звука называют оцифровкой. Преобразование аналоговой информации, получаемой от различных источников, производится в специальных устройствах – аналого-цифровых преобразователях. Сигнал, полученный от микрофона или другого устройства, можно образно представить в виде графика кривой. Для преобразования кривая разбивается на несколько равных участков, и значение сигнала на границе каждого участка (в опорных точках) заносится в память компьютера.

При обратном преобразовании, которое реализуется в цифроаналоговом преобразователе (ЦАП), сигнал «восстанавливается» по тем значениям, которые зафиксированы в памяти компьютера. Качество восстановленного сигнала во многом зависит от способа разбиения. Чем чаще расположены опорные точки, тем меньше будет искажен восстановленный сигнал, но при этом выше затраты ресурсов памяти. Количество интервалов разбиения, размещенных на промежутке длительностью в одну секунду, характеризуется частотой дискретизации.

Второй причиной серьезного искажения сигнала может быть количество битов, отведенных для записи значения сигнала. Если для записи отведено только 4 бита, то можно записать только 16 уровней, для высококачественной записи необходимо использовать 1 байт (256 уровней) или 2 байта и выше. Этот параметр преобразования характеризуется разрядностью преобразования. Количество бит, которые используются для записи номеров подуровней, называется глубиной кодирования звука.

Импульсное кодирование по сути можно сравнить с растровым представлением изображения:

  • структура звука при таком способе кодирования не анализируется, так же как и структура изображения при растровом представлении;

  • время (в графических изображениях – пространство) изначально разбивается на небольшие области, и в пределах каждой области параметры звука (изображения) считаются постоянными.

Растровое представление изображений не требует хранения координат каждого пикселя. Аналогично при сохранении импульсного представления звука один раз сохраняются параметры оцифровки (глубина кодирования, частота дискретизации и длительность звукового фрагмента), а затем требуется сохранять только номера подуровней единым потоком.

Очевидно, что если увеличивать частоту дискретизации и глубину кодирования, то впоследствии можно будет более точно восстановить форму звукового сигнала. Однако, при повышении таким образом качества записи ее объем будет увеличиваться. Поэтому возникает вопрос, какими должны быть частота дискретизации и глубина кодирования, чтобы получить оптимальное соотношение объема файла и качества воспроизводимого звука.

В 1928 году американский инженер и ученый Гарри Найквист высказал утверждение, что частота дискретизации должна в два или более раз превышать максимальную частоту измеряемого сигнала. В 1933 году советский ученый В. А. Котельников и независимо от него Клод Шеннон сформулировали и доказали теорему о том, при каких условиях и как по дискретным значениям можно восстановить форму непрерывного сигнала. Эта теорема носит название всех трех ученых, или нейтрально называется Теоремой об отсчетах. Результат применения этой теоремы – частота дискретизации должна быть как минимум вдвое выше частоты сигнала. Теорема доказана для сигналов с непрерывными частотными характеристиками и бесконечной длительностью. Поэтому для оцифровки реальных звуковых сигналов (конечных по времени) частоту дискретизации выбирают с небольшим запасом.