- •Билет №1
- •1.Способы получения электрической энергии на электростанциях различного типа, их достоинства и недостатки.
- •2. Назначение и принцип действия дифференциальной защиты.
- •3. Практическое задание.
- •4. Задача. Билет №2
- •1. Компоновки ору и зру подстанций
- •2. Граница раздела и балансовой принадлежности предприятия и энергосистемы.
- •3. Практическое задание.
- •4. Задача Билет №3
- •Выбор сечений проводов и кабелей линий электропередачи.
- •Максимальная токовая защита. Принцип действия защиты с независимой выдержкой времени. Расчет уставок.
- •Принцип действия
- •Мтз с пуском (блокировкой) от реле минимального напряжения[править | править вики-текст]
- •Задание уставок
- •3. Практическое задание.
- •4. Задача
- •Ненормальные режимы работы трансформаторов. Основные виды защиты трансформаторов.
- •Высоковольтные разъединители: назначение, основные типы.
- •Особенности применения разъединителей
- •Конструкция
- •Классификация высоковольтных разъединителей
- •Основные требования предъявляемые к разъединителям
- •Приводы к разъединителям
- •Секционные разъединители
- •Условные обозначения разъединителей
- •Техническое обслуживание разъединителей
- •Билет №5
- •3. Практическое задание.
- •4. Задача Билет №6
- •1.Способы гашения дуги в электрических аппаратах низкого и высокого напряжения.
- •2.Назначение, принцип действия, погрешности измерительных трансформаторов тока. Схемы соединений вторичных обмоток трансформаторов тока.
- •Схемы подключения измерительных трансформаторов тока
- •Трансформатор тока состоит из следующих частей:[править | править вики-текст]
- •Классификация трансформаторов тока
- •Параметры трансформаторов тока
- •Коэффициент трансформации[править | править вики-текст]
- •Класс точности
- •Обозначения трансформаторов тока
- •Замечания
- •3. Практическое задание.
- •4.Задача Билет №7
- •Типы электроустановок гпп, грп, тп, ру. Определение заводских источников питания и построение схемы электроснабжения.
- •2. Дистанционные защиты. Назначение дистанционных защит. Принцип действия реле сопротивления. Создание направленности действия реле сопротивления
- •3. Практическое задание.
- •4. Задача Билет №8
- •Режим работы трансформаторов тока. Влияние насыщения магнитопровода на точность измерения. Понятие допустимой кратности.
- •Особенности конструкции
- •Схемы подключения измерительных трансформаторов тока
- •Трансформатор тока состоит из следующих частей:
- •Классификация трансформаторов тока
- •Параметры трансформаторов тока
- •Коэффициент трансформации
- •Класс точности
- •Обозначения трансформаторов тока
- •Замечания
- •Схемы управления выключателями и разъединителями. Блокировка выключателей и разъединителей.
- •Практическое задание
- •Задача Билет №9
- •1. Регулирование напряжения в сетях вольт-добавочными трансформаторами. Режимы работы автотрансформаторов.
- •Билет №9
- •Принцип работы автотрансформатора
- •Применение автотрансформаторов
- •Дифференциальная токовая защита, особенности ее выполнения,
- •Продольная дифференциальная защита Принцип действия
- •Область применения
- •Поперечная дифференциальная защита Принцип действия
- •Область применения
- •Практическое задание
- •Задача Билет №11
- •1.Повреждения и ненормальные режимы работы трансформаторов. Виды защит трансформаторов.
- •2.Короткое замыкание в симметричной трёхфазной цепи электроприемника. Несимметричные и аварийные режимы работы трехфазных цепей
- •Аварийные режимы в нагрузках соединенных звездой
- •Аварийные режимы в нагрузках соединенных треугольником
- •3. Практическое задание.
- •4.Задача Билет №12
- •Выбор трансформаторов тока и трансформаторов напряжения для электротехнических установок.
- •Режимы работы и устойчивость системы электроснабжения
- •Практическое задание
- •Задача Билет №13
- •Типы приемников электроэнергии, классификация приемников электроэнергии. Уровни (ступени) системы электроснабжения.
- •Статические и динамические вольт-амперные и вольт-секундные характеристики электрической дуги. Вольт-амперная характеристика дуги (вах)
- •3.Практические задания.
- •4. Задача Билет №14
- •1. Назначение и режим нейтрали электрических сетей напряжением до и выше 1 кВ. Режимы работы нейтралей электрических сетей
- •3.1. Работа сети с изолированной нейтралью
- •2. Перегрузочная способность силового трансформатора, проверка трансформатора по перегрузочной способности.
- •3. Практическое задание
- •4. Задача Билет №15
- •1. Реакторы: их функции в схемах электроснабжения, понятие номинального сопротивления, понятие остаточного напряжения, типовые схемы включения.
- •Устройство и принцип действия
- •Виды реакторов
- •Бетонные реакторы
- •Масляные реакторы
- •Сухие реакторы
- •Броневые реакторы
- •Сдвоенные реакторы
- •Межсекционные и фидерные реакторы
- •2. Основные потребители реактивной мощности. Источники реактивной мощности.
- •3.Практическое задание
- •4. Задача Билет №16
- •Назначение и принцип действия апв.
- •Классификация[править | править вики-текст]
- •Принцип действия апв
- •Требование к апв
- •3. Практическое задание.
- •4. Задача. Билет №17.
- •Способы гашения дуги в электрических аппаратах низкого и высокого напряжения. Принцип работы дугогасящих камер выключателей.
- •Шинные конструкции: виды шин и токопроводов.
- •Шинопровод
- •Практическое задание.
- •Задача Билет №18.
- •Регулирование напряжения и компенсация реактивной мощности в электрических сетях.
- •Применение
- •Переключение без возбуждения
- •Переключатели числа витков без возбуждения
- •Регулирование под нагрузкой
- •Рпн с токоограничивающими реакторами
- •Рпн с токоограничивающими резисторами
- •Автоматическое регулирование напряжения
- •Последовательные регулировочные трансформаторы (Вольтодобавочные трансформаторы)
- •Билет №19
- •Переменный оперативный ток
- •3. Практическое задание
- •4. Задача. Билет №20
- •Способы гашения дуги в электрических аппаратах низкого и высокого напряжения. Краткое описание процессов поддерживающих и разрушающих электрическую дугу. Условия возникновения и горения дуги
- •Гашение дуги
- •Способы гашения дуги в коммутационных аппаратах до 1 кВ.
- •2. Деление длинной дуги на ряд коротких дуг.
- •Основные способы гашения дуги в аппаратах выше 1 кВ.
- •Гашение дуги в масляных выключателях.
- •Гашение дуги в элегазовых выключателях
- •Гашение дуги в вакуумных выключателях
- •Билет №21
- •. Релейная защита лэп напряжением 110 кВ и выше. Схема мтз с дешунтированием отключающей катушки привода выключателя. Особенности выбора тока срабатывания защиты.
- •2.4 Защита лэп 500 кВ и выше.
- •Проблемы резервирования
- •3. Практическое задание
- •4. Задача. Билет №22
- •Графики электрической загрузки потребителей и их характеристики.
- •Суточные графики нагрузки потребителей
- •Суточные графики районных подстанций
- •Суточные графики нагрузки электростанций
- •Годовой график продолжительности нагрузок
- •Технико-экономические показатели, определяемые из графиков нагрузки
- •Назначение автоматического регулирования напряжения и реактивной мощности (арн и рм) в электрических системах.
- •Применение
- •Переключение без возбуждения[править | править вики-текст]
- •Переключатели числа витков без возбуждения[править | править вики-текст]
- •Регулирование под нагрузкой
- •Рпн с токоограничивающими реакторами
- •Рпн с токоограничивающими резисторами
- •Автоматическое регулирование напряжения
- •Последовательные регулировочные трансформаторы (Вольтодобавочные трансформаторы)
- •Практическое задание
- •Задача.
Режимы работы и устойчивость системы электроснабжения
Устойчивость энергосистемы — это способность ее возвращаться в исходное состояние при малых или значительных возмущениях. По аналогии с механической системой установившийся режим энергосистемы можно трактовать как равновесное положение ее.
Параллельная работа генераторов электрических станций, входящих в энергосистему, отличается от работы генераторов на одной станции наличием линий электропередачи, связывающих эти станции. Сопротивления линий электропередачи уменьшают снихронизирующую мощность генераторов и затрудняют их параллельную работу. Кроме того, отклонения от нормального режима работы системы, которые происходят при отключениях, коротких замыканиях, внезапном сбросе или набросе нагрузки, также могут привести к нарушению устойчивости, что является одной из наиболее тяжелых: аварий, приводящей к перерыву электроснабжения потребителей Поэтому изучение проблемы устойчивости очень важно, особенно применительно к линиям электропередачи переменным током. Различают два вида устойчивости: статическую и динамическую.
Статической устойчивостью называют способность системы самостоятельно восстановить исходный режим при малых и медленно происходящих возмущениях, например при постепенном незначительном увеличении или уменьшении нагрузки.
Динамическая устойчивость энергосистемы характеризует способность системы сохранять синхронизм после внезапных и резких изменений параметров режима или при авариях в системе (коротких замыканиях, отключений часта генераторов, линий или трансформаторов). После таких внезапных нарушений нормальной работы в системе возникает переходный процесс, по окончании которого вновь должен наступить установившийся послеаварийный режим работы.
Способы повышения устойчивости
Основным способом повышения устойчивости является увеличение предела передаваемой мощвости. Этого можно достичь повышением э.д.с. генераторов, напряжения на шинах нагрузки или уменьшением индуктивного сопротивления линии. Основными средствами повышения устойчи вости являются следующие:
- применение быстродействующих автоматических регуляторов напряжения, увеличивающих э. д. с. генераторов при возрастании нагрузки. Для повышения динамической устойчивости при к. з. особенно большое значение имеет форсировка возбуждения, при которой контакты специального реле шунтируют реостаты возбуждения; в результате в обмотку возбудителя подается наибольший возможный ток («потолочное» возбуждение). В современных генераторах «потолочный» ток возбуждения составляет 1,8—2.0 его номинального значения;
- повышение напряжений действующих линий, например со 110 на 150 или иа 220 кВ;
- уменьшение индуктивного сопротивления линий, достигаемое расщеплением проводов мощных линий на два или три, или применением продольной емкостной компенсации с последовательным включением в линию батареи конденсаторов;
применение быстродействующих выключателей, защит и автоматического повторного включения линий.
На устойчивость энергосистемы может улучшить использование компенсирующих устройств
