Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТМ Разд1.воп1-6.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
135.27 Кб
Скачать

Статически определимые и неопределимые системы. Расчет составных конструкций.

Основная форма условий равновесия. Для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы проекций всех сил на каждую из двух координатных осей и сумма их моментов относительно любого центра, лежащего в плоскости действия сил, были равны нулю.

Статически определенными называют системы, которые можно решить методами статики твердого тела, т. е. системы, в которых число неизвестных не превышает числа уравнений равновесия сил.

Статически неопределенными называют системы с числом неиз­вестных, превышающим число уравнений равновесия сил, т. е. системы, которые нельзя решать методами статики твердого тела и для решения которых нужно учитывать деформации тела, обусловленные внешними нагрузками.

Если к телу приложена плоская система параллельных сил, то можно использовать только 2 уравнения равновесия сил, чтобы система была статически определена.

5. Проекция силы на ось.

    Проекция силы на ось – это алгебраическая величина, равная произведению модуля силы на косинус угла между положительным направлением оси и вектором силы (т.е. это отрезок, откладываемый силой на соответствующие оси. Рисунок 1.13):

 Fx= Fcosα;

Px= Pcosβ= P cos90o=0;

Rx= Rcosγ = -R cos(180o-γ).   

Рисунок 1.13

    Проекция силы на ось может быть положительной, рис. 1.13а (0 ≤ α π/2), равной нулю, рис. 1.13б (β = π/2 ) и отрицательной, рис. 1.13в (π/2 γ ≤ π).

    Иногда для нахождения проекции силы на ось сначала нужно найти ее проекцию на плоскость, а потом проекцию на ось (рисунок 1.14):

 Pz= P sinα;

Px= (P cosα)cosβ;

Py= (P cosα)cosγ = P cosα cos(90o-β).

Рисунок 1.14

6. Определение момента силы относительно точки.

Если под действием приложенной силы твердое тело может совершать вращение вокруг некоторой точки, то для того, чтобы охарактеризовать вращательный эффект силы вводится понятие – момент силы относительно точки (или центра).

Моментом силы относительно точки (рисунок 1.1) называется векторное произведение радиус-вектора  точки  приложения силы на вектор силы. 

                                                Mo(F) = r  F

Рисунок 1.1

Вектор момента направлен перпендикулярно плоскости, в которой лежат сила и точка, в ту сторону, откуда поворот от действия силы виден происходящим против хода часовой стрелки.

Вектор момента характеризует положение плоскости и направление вращательного действия силы, а также дает меру этого действия:

 |Mo(F)| = Frsinα = Fh,

где  h – плечо силы (кратчайшее расстояние от точки  O – центра момента – до линии действия силы). Если сила проходит через точку, то ее момент относительно этой точки равен нулю.

Момент силы относительно точки не меняется от переноса силы вдоль линии ее действия.

Если силы расположены в одной плоскости, то используется понятие алгебраического момента силы. Алгебраическим моментом силы относительно точки (или центра) называется взятое со знаком плюс или минус произведение модуля силы на плечо (рисунок 1.2). 

Знак плюс выбирается в том случае, если сила стремится поворачивать плоскость относительно центра момента против хода часовой стрелки.

 

Рисунок 1.2

Если сила F  задана своими проекциями Fx, Fy, Fz  на оси координат и даны координаты x, y, z  точки приложения этой силы, то момент силы относительно начала координат вычисляется следующим образом:

Проекции момента силы   на оси координат равны