Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ильина_Г.Г._учебное_пособие_исправленное_01.07.2011.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.55 Mб
Скачать

Расчетная таблица для коэффициента ассоциации

Оценки

Студенты

Положительные оценки

Неудовлетво-рительные оцени

Итого:

Работающие по специальности

а

138

b

12

150

Работающие не по специальности

c

102

d

48

150

Итого:

240

60

300

Коэффициент ассоциации равен:

или 68,8%

Данный показатель показывает частоту связи между показателями оценок, работающего по специальности и не по специальности. Связь между показателями будет тесная (68,8%), т.е. чем больше студенты будут работать по специальности, тем больше будет положительных оценок.

7. Методы оценки существенности расчета коэффициента корреляции.

Как правило расчет коэффициента корреляции при определении тесноты связи производится на базе небольшого числа исходных данных – выборочных данных.

В этой связи возникает необходимость оценить существенности коэффициента корреляции, которая дает возможность распространить выводы по результатам выборочных данных на генеральную совокупность. Критерии оценки существенности расчета коэффициента корреляции основаны на условии нормального распределения значений признака в генеральной совокупности. Рассмотрим некоторые из них: при большом объеме выборки и при малом объеме выборки.

7.1 При большом объеме выборки

При большой выборке, отобранной из генеральной совокупности нормального распределения, предполагается считать распредение коэффициента корреляции близко к нормальному со средней, равной «r» и дисперсией , а среднеквадратическая ошибка коэффициента корреляции тогда будет равна:

, где

r – коэффициент корреляции выборочной совокупности;

n – объем выборки;

k = n – 2 – число степеней свободы при линейной зависимости.

Если величина > в раз, или > 1

Найдем для сгруппированных данных (см. таб. 14) среднюю квадратическую ошибку коэффициента корреляции:

, тогда

С вероятностью0,95 и числом степеней свободы k = 50 – 2 = 48, 1.

Поскольку > , следует, что с вероятностью Р = 0,95 и числом степеней свободы k = 48 можно утверждать о существенности выборочного коэффициента корреляции, т.е. связь между х и y – значимая.

Для генеральной совокупности коэффициент корреляции будет находится в пределах.

или

С вероятностью 0,95 можно утверждать, что коэффициент корреляции будет не ниже 46,6% и не выше 80,4%.

7.2 При малой выборки

Для малого объема выборочной совокупности для оценки значимости коэффициента корреляции.

Если > , то расчетный коэффициент корреляции существенен и связь между х и y вполне реальна. Если < , то связь между х и y несущественна и корреляционная связь в генеральной совокупности отсутствует.

По данным таблицы 15

, а с вероятностью 0,95 и числом степеней свободы k = 10 – 2 = 8, 1.

Значит связь между х (простоями) и y – (выпуском продукции) существенна, т.к.

>